Skip to main content

Advertisement

Log in

Adult bone marrow–derived cells: Regenerative potential, plasticity, and tissue commitment

  • FOCUSED ISSUE: Cardiac Repair by Stem Cells
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Reconstitution of infarcted myocardium with functional new cardiomyocytes and vessels, a goal that only a few years ago would have been regarded as extravagant, is now actively pursued in numerous laboratories and clinical centers. Several recent studies in animals as well as humans have shown that transplantation of adult bone marrow–derived cells (BMCs) can improve left ventricular function and halt adverse remodeling after myocardial infarction. Differentiation of adult BMCs into cells of cardiac and vascular lineages has been proposed as a mechanism underlying these benefits and, indeed, differentiation of adult BMCs into cells of non–hematopoietic lineages, including cells of brain, skeletal muscle, heart, liver, and other organs, has been documented repeatedly both in vitro and in vivo. These results are in contrast with conventional definitions and dogma, according to which adult tissue–specific stem cells exhibit only restricted differentiation potential. Thus, these recent studies have sparked intense debate over the ability of adult BMCs to differentiate into non–hematopoietic tissues, and the regeneration of myocardium by differentiation of adult BMCs remains highly controversial. Because of the enormous clinical implications of BMCmediated cardiac repair, numerous laboratories are currently addressing the feasibility of cardiac regeneration with BMCs and deciphering the mechanism underlying the beneficial effects. The purpose of this review is to critically examine the available evidence regarding the ability of adult BMCs to regenerate non–hematopoietic tissues and their utility in therapeutic cardiac regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085

    Article  PubMed  Google Scholar 

  2. Ferrari G, Cusella–De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow–derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  Google Scholar 

  3. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  Google Scholar 

  4. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 (19 Suppl):II247–II256

    PubMed  Google Scholar 

  5. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    Article  PubMed  Google Scholar 

  6. Lagasse E, Connors H, Al–Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    Article  PubMed  Google Scholar 

  7. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, Krause DS (2000) Derivation of hepatocytes from bone marrow cells in mice after radiationinduced myeloablation. Hepatology 31:235–240

    Article  PubMed  Google Scholar 

  8. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS (2000) Liver from bone marrow in humans. Hepatology 32:11–16

    Article  PubMed  Google Scholar 

  9. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal–Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  Google Scholar 

  10. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925; discussion 1926

    Article  PubMed  Google Scholar 

  11. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    Article  PubMed  Google Scholar 

  12. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, Ratajczak J, Rezzoug F, Ildstad ST, Bolli R, Ratajczak MZ (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95:1191–1199

    Article  PubMed  Google Scholar 

  13. Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB, Wong MH, Fleming WH (2004) Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103:13–19

    Article  PubMed  Google Scholar 

  14. Almeida–Porada G, Porada CD, Chamberlain J, Torabi A, Zanjani ED (2004) Formation of human hepatocytes by human hematopoietic stem cells in sheep. Blood 104:2582–2590

    Article  PubMed  Google Scholar 

  15. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha DH, Johnson KL, Aikawa R, Asahara T, Losordo DW (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115:326–338

    Article  PubMed  Google Scholar 

  16. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  PubMed  Google Scholar 

  17. Alvarez–Dolado M, Pardal R, Garcia– Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez–Buylla A (2003) Fusion of bone–marrow–derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  PubMed  Google Scholar 

  18. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al–Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone–marrow–derived hepatocytes. Nature 422:897–901

    Article  PubMed  Google Scholar 

  19. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904

    Article  PubMed  Google Scholar 

  20. Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13:480–485

    Article  PubMed  Google Scholar 

  21. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  Google Scholar 

  22. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  Google Scholar 

  23. Chien KR (2004) Stem cells: lost in translation. Nature 428:607–608

    Article  PubMed  Google Scholar 

  24. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    Article  PubMed  Google Scholar 

  25. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    Article  PubMed  Google Scholar 

  26. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia– and cytokine–induced mobilization of bone marrow–derived endothelial progenitor cells for neovascularization. Nat Med 5:434–348

    Article  PubMed  Google Scholar 

  27. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    PubMed  Google Scholar 

  28. Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107:461–468

    Article  PubMed  Google Scholar 

  29. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  30. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE–AMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  31. Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S, Zeiher AM (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE–AMI): mechanistic insights from serial contrast–enhanced magnetic resonance imaging. Circulation 108:2212–2218

    Article  PubMed  Google Scholar 

  32. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  PubMed  Google Scholar 

  33. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one–year results of the TOPCARE–AMI Trial. J Am Coll Cardiol 44:1690–1699

    Article  PubMed  Google Scholar 

  34. Wollert KC, Meyer GP, Lotz J, Ringes– Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone–marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

  35. Fuchs E, Segre JA (2000) Stem cells: a new lease on life. Cell 100:143–155

    Article  PubMed  Google Scholar 

  36. Poulsom R, Alison MR, Forbes SJ, Wright NA (2002) Adult stem cell plasticity. J Pathol 197:441–456

    Article  PubMed  Google Scholar 

  37. Gunsilius E, Gastl G, Petzer AL (2001) Hematopoietic stem cells. Biomed Pharmacother 55:186–194

    Article  PubMed  Google Scholar 

  38. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  PubMed  Google Scholar 

  39. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    Article  PubMed  Google Scholar 

  40. Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353

    Article  PubMed  Google Scholar 

  41. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  Google Scholar 

  42. Pearce DJ, Ridler CM, Simpson C, Bonnet D (2004) Multiparameter analysis of murine bone marrow side population cells. Blood 103:2541–2546

    Article  PubMed  Google Scholar 

  43. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  PubMed  Google Scholar 

  44. Howell JC, Lee WH, Morrison P, Zhong J, Yoder MC, Srour EF (2003) Pluripotent stem cells identified in multiple murine tissues. Ann N Y Acad Sci 996:158–173

    PubMed  Google Scholar 

  45. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska–Wieczorek A, Ratajczak J (2004) Stem cell plasticity revisited: CXCR4–positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 18:29–40

    Article  PubMed  Google Scholar 

  46. Kucia M, Ratajczak J, Reca R, Janowska–Wieczorek A, Ratajczak MZ (2004) Tissue– specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF–1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 32:52–57

    Article  PubMed  Google Scholar 

  47. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  48. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    PubMed  Google Scholar 

  49. Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Mlyatake H, Muguruma Y, Tsubol K, Itabashi Y, Ikeda Y, Ogawa S, Okano H, Hotta T, Ando K, Fukuda K (2004) Nonhematopoletic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581–3587

    Article  PubMed  Google Scholar 

  50. Hattan N, Kawaguchi H, Ando K, Kuwabara E, Fujita J, Murata M, Suematsu M, Mori H, Fukuda K (2005) Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res 65:334–344

    Article  PubMed  Google Scholar 

  51. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K, Wyderka R, Ochala A, Ratajczak MZ (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c–met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110:3213–3220

    Article  PubMed  Google Scholar 

  52. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone–marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  PubMed  Google Scholar 

  53. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103:2776–2779

    PubMed  Google Scholar 

  54. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, Fleming I, Busse R, Zeiher AM, Dimmeler S (2003) Transdifferentiation of blood–derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 107:1024–1032

    Article  PubMed  Google Scholar 

  55. Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, Champlin RE, Estrov Z (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral–blood stem cells. N Engl J Med 346:738–746

    Article  PubMed  Google Scholar 

  56. Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, Ikeda Y, Hibi T, Inazawa J, Watanabe M (2002) Damaged epithelia regenerated by bone marrow–derived cells in the human gastrointestinal tract. Nat Med. 2002 Sep; 8 (9):1011–1017 8:1011–1017

    Article  PubMed  Google Scholar 

  57. Anversa P, Nadal–Ginard B (2002) Cardiac chimerism: methods matter. Circulation 106:e129–131

    Article  PubMed  Google Scholar 

  58. Hernandez LD, Hoffman LR, Wolfsberg TG, White JM (1996) Virus–cell and cellcell fusion. Annu Rev Cell Dev Biol 12:627–661

    Article  PubMed  Google Scholar 

  59. Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448

    Article  PubMed  Google Scholar 

  60. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafe M, Nadal– Ginard B, Torella D, Nascimbene A, Quaini F, Urbanek K, Leri A, Anversa P (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137

    Article  PubMed  Google Scholar 

  61. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal–Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  Google Scholar 

  62. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102:3766–3771

    Article  PubMed  Google Scholar 

  63. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal–Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349

    Article  PubMed  Google Scholar 

  64. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone–marrow stem–cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  65. Tosh D, Slack JM (2002) How cells change their phenotype. Nat Rev Mol Cell Biol 3:187–194

    Article  PubMed  Google Scholar 

  66. Martin–Rendon E, Watt SM (2003) Stem cell plasticity. Br J Hematol 122:877–891

    Article  Google Scholar 

  67. Ratajczak MZ, Kucia M, Majka M, Reca R, Ratajczak J (2004) Heterogeneous populations of bone marrow stem cells–are we spotting on the same cells from the different angles? Folia Histochem Cytobiol 42:139–146

    PubMed  Google Scholar 

  68. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127

    Article  PubMed  Google Scholar 

  69. Kucia M, Ratajczak J, Ratajczak MZ (2005) Are bone marrow stem cells plastic or heterogenous–That is the question. Exp Hematol 33:613–623

    Article  PubMed  Google Scholar 

  70. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz–Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  Google Scholar 

  71. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte–like cells. J Clin Invest 109:1291–1302

    Article  PubMed  Google Scholar 

  72. Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 100 (Suppl 1):11854–11860

    Article  PubMed  Google Scholar 

  73. Association AH (1996) Heart and stroke facts. Statistical Supplement: 1–23

    Google Scholar 

  74. Pfeffer MA, Pfeffer JM, Lamas GA (1993) Development and prevention of congestive heart failure following myocardial infarction. Circulation 87:IV120–IV125

    PubMed  Google Scholar 

  75. Maekawa Y, Anzai T, Yoshikawa T, Sugano Y, Mahara K, Kohno T, Takahashi T, Ogawa S (2004) Effect of granulocytemacrophage colony–stimulating factor inducer on left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 44:1510–1520

    Article  PubMed  Google Scholar 

  76. Valgimigli M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percoco G, Bugli AM, Porta MD, Bragotti LZ, Ansani L, Mauro E, Lanfranchi A, Giganti M, Feggi L, Castoldi G, Ferrari R (2005) Use of granulocyte–colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 26:1838–1845

    Article  PubMed  Google Scholar 

  77. Wang Y, Tagil K, Ripa RS, Nilsson JC, Carstensen S, Jorgensen E, Sondergaard L, Hesse B, Johnsen HE, Kastrup J (2005) Effect of mobilization of bone marrow stem cells by granulocyte colony stimulating factor on clinical symptoms, left ventricular perfusion and function in patients with severe chronic ischemic heart disease. Int J Cardiol 100:477–483

    Article  PubMed  Google Scholar 

  78. Wollert KC, Drexler H (2005) Clinical applications of stem cells for the heart. Circ Res 96:151–163

    Article  PubMed  Google Scholar 

  79. Bolli R, Jneid H, Dawn B (2005) Bone marrow cell–mediated cardiac regeneration: a veritable revolution. J Am Coll Cardiol (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dawn M.D..

Additional information

Dr. M. Sussman, San Diego, USA, served as guest editor for the manuscript and was reponsible for all editorial decisions, including the selection of reviewers. The policy applies to all manuscripts with authors from the editor's institution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawn, B., Bolli, R. Adult bone marrow–derived cells: Regenerative potential, plasticity, and tissue commitment. Basic Res Cardiol 100, 494–503 (2005). https://doi.org/10.1007/s00395-005-0552-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0552-5

Key words

Navigation