Skip to main content

Advertisement

Log in

Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

Advanced glycation end products (AGEs) and endothelial progenitor cells (EPCs) play divergent roles in the process of atherosclerosis. We investigated the effects of AGE-human serum albumin (AGE-HSA) on receptor expression for AGEs (RAGE) and EPCs apoptosis.

Methods

The human mononuclear cells were obtained by Ficoll density gradient centrifugation and cultured in M199 medium containing rh-VEGF (30 ng/ml), rh-b-FGF(6 ng/ml) and 20% NBCS for 8 days. The adhesive EPCs were sequentially harvested after 24 h synchronization and challenged with AGE-HSA (concentration range from 0 to 300 µg/ml) for 24 h and 200 µg/ml AGE-HSA (time range from 0 to 36 h). EPCs apoptosis and migration were determined, expressions of RAGE, phosphorylated ERK1/2, JNK and p38 mitogen-activated protein kinase (MAPK) of EPCs were quantified by fluorescent quantitation RT-PCR and Western-blot, effect of AGE-HSA on NF-κB activtiy was determined by EMSA (electrophoretic mobility shift assay) in the presence and absence of special MAPK pathways pathway inhibitors.

Results

AGE-HSA upregulated the expression of RAGE, this effect could be significantly inhibited by p38 MAPK and ERK MAPK inhibitor, but not by JNK MAPK inhibitor. AGE-HSA also promoted EPCs apoptosis and inhibited EPCs migration and increased NF-κB activity, these effects could be significantly attenuated by the anti-RAGE neutralizing antibody as well as by p38 and ERK MAPK inhibitors.

Conclusion

AGE-HSA could promote atherosclerosis by upregulating EPCs RAGE expressions and promoting EPCs apoptosis via p38, ERK MAPK pathways, activation of NF-κB might also play a role in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  2. Boyer M, Townsend LE, Vogel LM, Falk J, Reitz-Vick D, Trevor KT, Villalba M, Bendick PJ, Glover JL (2000) Isolation of endothelial cells and their progenitor cells from human peripheral blood. J Vasc Surg 31:181–189

    Article  PubMed  CAS  Google Scholar 

  3. Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P, Zeiher AM, Chavakis T, Dimmeler S (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100:204–212

    Article  PubMed  CAS  Google Scholar 

  4. Cipollone F, Iezzi A, Fazia M, Zucchelli M, Pini B, Cuccurullo C, De Cesare D, De Blasis G, Muraro R, Bei R, Chiarelli F, Schmidt AM, Cuccurullo F, Mezzetti A (2003) The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 108:1070–1077

    Article  PubMed  CAS  Google Scholar 

  5. de Nigris F, Gallo L, Sica V, Napoli C (2006) Glycoxidation of low-density lipoprotein promotes multiple apoptotic pathways and NFkappaB activation in human coronary cells. Basic Res Cardiol 101:101–108

    Article  PubMed  Google Scholar 

  6. Ferrandi C, Ballerio R, Gaillard P, Giachetti C, Carboni S, Vitte PA, Gotteland JP, Cirillo R (2004) Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 142:953–960

    Article  PubMed  CAS  Google Scholar 

  7. George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Miller H, Keren G (2005) Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 25:2936–2641

    Article  Google Scholar 

  8. Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) CD34- blood-derived human endothelial cell progenitors. Stem Cells 19:304–312

    Article  PubMed  CAS  Google Scholar 

  9. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448

    Article  PubMed  CAS  Google Scholar 

  10. Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, Emond J, Clynes R, Schmidt AM (2007) Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol 82:204–212

    Article  PubMed  CAS  Google Scholar 

  11. Jeon ES, Lee MJ, Sung SM, Kim JH (2007) Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem 100:1536–1547

    Article  PubMed  CAS  Google Scholar 

  12. Krankel N, Adams V, Linke A, Gielen S, Erbs S, Lenk K, Schuler G, Hambrecht R (2005) Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thromb Vasc Biol 25:698–703

    Article  PubMed  Google Scholar 

  13. Kuki S, Imanishi T, Kobayashi K, Matsuo Y, Obana M, Akasaka T (2006) Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ J 70:1076–1081

    Article  PubMed  CAS  Google Scholar 

  14. Lee JS, Lee JJ, Seo JS (2005) HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 280:6634–6641

    Article  PubMed  CAS  Google Scholar 

  15. Leor J, Marber M (2006) Endothelial progenitors: a new Tower of Babel? J Am Coll Cardiol 48:1588–1590

    Article  PubMed  Google Scholar 

  16. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–199

    Article  PubMed  CAS  Google Scholar 

  17. Lyngbaek S, Schneider M, Hansen JL, Sheikh SP (2007) Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol 102:101–114

    Article  PubMed  Google Scholar 

  18. Mishra JP, Mishra S, Gee K, Kumar A (2005) Differential involvement of calmodulin-dependent protein kinase II-activated AP-1 and c-Jun N-terminal kinase-activated EGR-1 signaling pathways in tumor necrosis factor-alpha and lipopolysaccharide-induced CD44 expression in human monocytic cells. J Biol Chem 280:26825–26837

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura Y, Horii Y, Nishino T, Shiiki H, Sakaguchi Y, Kagoshima T, Dohi K, Makita Z, Vlassara H, Bucala R (1993) Immunohistochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus. Am J Pathol 143:1649–1656

    PubMed  CAS  Google Scholar 

  20. Reddy GP, Tiarks CY, Pang L, Wuu J, Hsieh CC, Quesenberry PJ (1997) Cell cycle analysis and synchronization of pluripotent hematopoietic progenitor stem cells. Blood 90:2293–2299

    PubMed  CAS  Google Scholar 

  21. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  PubMed  Google Scholar 

  22. Rosso A, Balsamo A, Gambino R, Dentelli P, Falcioni R, Cassader M, Pegoraro L, Pagano G, Brizzi MF (2006) p53 mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem 281:4339–4347

    Article  PubMed  CAS  Google Scholar 

  23. Safciuc F, Constantin A, Manea A, Nicolae M, Popov D, Raicu M, Alexandru D, Constantinescu E (2007) Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging. Curr Neurovasc Res 4:228–234

    Article  PubMed  CAS  Google Scholar 

  24. Sakata N, Imanaga Y, Meng J, Tachikawa Y, Takebayashi S, Nagai R, Horiuchi S, Itabe H, Takano T (1998) Immunohistochemical localization of different epitopes of advanced glycation end products in human atherosclerotic lesions. Atherosclerosis 141:61–75

    Article  PubMed  CAS  Google Scholar 

  25. Sakata N, Meng J, Takebayashi S (2000) Effects of advanced glycation end products on the proliferation and fibronectin production of smooth muscle cells. J Atheroscler Thromb 7:169–176

    PubMed  CAS  Google Scholar 

  26. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106:571–578

    Article  PubMed  CAS  Google Scholar 

  27. Scheubel RJ, Kahrstedt S, Weber H, Holtz J, Friedrich I, Borgermann J, Silber RE, Simm A (2006) Depression of progenitor cell function by advanced glycation endproducts (AGEs): potential relevance for impaired angiogenesis in advanced age and diabetes. Exp Gerontol 41:540–548

    Article  PubMed  CAS  Google Scholar 

  28. Schleicher E, Friess U (2007) Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl 106:S17–S26

    Google Scholar 

  29. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW, Weber C (2008) Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 103:69–77

    Article  PubMed  Google Scholar 

  30. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rossig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111:1184–1191

    Article  PubMed  CAS  Google Scholar 

  31. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226

    Article  PubMed  CAS  Google Scholar 

  32. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    Article  PubMed  Google Scholar 

  33. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024

    Article  PubMed  CAS  Google Scholar 

  34. Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24

    Article  PubMed  CAS  Google Scholar 

  35. Werner N, Wassmann S, Ahlers P, Schiegl T, Kosiol S, Link A, Walenta K, Nickenig G (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571

    Article  PubMed  Google Scholar 

  36. Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T (2003) Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res 23:129–134

    PubMed  CAS  Google Scholar 

  37. Zhao X, Huang L, Yin Y, Fang Y, Zhou Y (2007) Autologous endothelial progenitor cells transplantation promoting endothelial recovery in mice. Transpl Int 20:712–721

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Major National Basic Research Development Program of People’s Republic of China (2005CB523309). We thank Jack Williams for the help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zonggui Wu.

Additional information

C. Sun and C. Liang contributed equally to this work.

Returned for 1. Revision: 13 December 2007 1. Revision received: 20 February 2008 Returned for 2. Revision: 7 March 2008 2. Revision received: 9 June 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Liang, C., Ren, Y. et al. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol 104, 42–49 (2009). https://doi.org/10.1007/s00395-008-0738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-008-0738-8

Keywords

Navigation