Skip to main content
Log in

Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, one-dimensional polyaniline/titanate (PANI/TN) composite nanotubes were synthesized by in situ chemical oxidative polymerization directed by block copolymer. These novel nanocomposite particles were used as a dispersed phase in electrorheological (ER) fluids, and the ER properties were investigated under both steady and dynamic shear. It was found that the ER activity of PANI/TN fluids varied with the ratio of aniline to titanate, and the PANI/TN suspensions showed a higher ER effect than that made by sphere-like PANI/TiO2 nanoparticles. These observations were well interpreted by their dielectric spectra analysis; a larger dielectric loss enhancement and a faster rate of interfacial polarization were responsible for a higher ER activity of nanotubular PANI/TN-based fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  2. Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang P (2004) Science 305:1269

    Article  CAS  Google Scholar 

  3. Li ZF, Swihart MT, Ruchenstein E (2004) Langmuir 20:1963

    Article  CAS  Google Scholar 

  4. Huang Y, Duan XF, Lieber CM (2005) Small 1:142

    Article  CAS  Google Scholar 

  5. Ying JB, Zhao XP (2006) Nanotechnology 17:192

    Article  Google Scholar 

  6. Lozano K, Hernandez C, Petty TW, Sigman MB, Korgel B (2006) J Colloid Interface Sci 297:618

    Article  CAS  Google Scholar 

  7. Feng P, Wan Q, Fu XQ, Wang TH, Tian Y (2002) Appl Phys Lett 87:033114

    Article  Google Scholar 

  8. Block H, Kelly JP (1998) J Phys D Appl Phys 21:1661

    Article  Google Scholar 

  9. Klingenberg DJ, Zukoki CF (1990) Langmuir 6:15

    Article  CAS  Google Scholar 

  10. Hao T (2001) Adv Mater 13:1847

    Article  CAS  Google Scholar 

  11. Tian ZJ, Zou XW, Zhang WB, Jin ZZ (1999) Phys Rev E 59:3177

    Article  Google Scholar 

  12. Liu Y, Liao FH, Li JR, Zhang SH, Chen SM, Wei CG, Cao S (2006) Scripta Mater 54:125

    Article  CAS  Google Scholar 

  13. Wang BX, Zhao XP, Zhao Y, Ding CL (2007) Compos Sci Technol 67:3031

    Article  CAS  Google Scholar 

  14. Sung JH, Jang WH, Choi HJ, Jhon MS (2005) Polymer 46:12359

    Article  CAS  Google Scholar 

  15. Chiang YC, Jamieson AM, Kawasumi M, Perec V (1997) Macromolecules 30:1992

    Article  CAS  Google Scholar 

  16. Lengalova A, Pavlinek V, Saha P, Quadrat O, Kitano T, Stejskal J (2003) Eur Polym J 39:641

    Article  CAS  Google Scholar 

  17. Woo DJ, Suh MH, Shin ES, Lee CW, Lee SH (2005) J Colloid Interface Sci 288:71

    Article  CAS  Google Scholar 

  18. Kim YD, Song IC (2002) J Mater Sci 37:5051

    Article  CAS  Google Scholar 

  19. Cho MS, Choi HJ, Ahn WS (2004) Langmuir 20:202

    Article  CAS  Google Scholar 

  20. Wen W, Huang X, Yang X, Lu X, Sheng P (2003) Nat Mater 2:727

    Article  CAS  Google Scholar 

  21. Wang BX, Zhao XP (2005) Adv Mater 15:1815

    CAS  Google Scholar 

  22. Cheng Q, Pavlinek V, Lengalova A, Li C, He Y, Saha P (2006) Micropor Mesopor Mater 93:263

    Article  CAS  Google Scholar 

  23. Cheng Q, Pavlinek V, He Y, Li C, Lengalova A, Saha P (2007) Eur Polym J 43:3780

    Article  CAS  Google Scholar 

  24. Lan Y, Gao X, Zhu Y, Zheng Z, Yan T, Wu F, Ringer SP, Song D (2005) Adv Funct Mater 15:1310

    Article  CAS  Google Scholar 

  25. Li CC, Zhang ZK (2004) Macromolecules 37:2683

    Article  CAS  Google Scholar 

  26. Woo DJ, Suh MH, Shin ES, Lee CW, Lee SH (2005) J Colloid Interface Sci 288:71

    Article  CAS  Google Scholar 

  27. Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Langmuir 19:5875

    Article  CAS  Google Scholar 

  28. Klingenberg DJ, Van Swol F, Zukoski CF (1991) J Chem Phys 94:6170

    Article  CAS  Google Scholar 

  29. Davis LC (1997) J Appl Phys 81:1985

    Article  CAS  Google Scholar 

  30. Yoon DJ, Kim YD (2006) J Colloid Interface Sci 303:573

    Article  CAS  Google Scholar 

  31. Cho MS, Choi HJ, To K (1998) Macromol Rapid Commun 19:271

    Article  CAS  Google Scholar 

  32. Pavlinek V, Saha P, Kitano T, Stejskal J, Quadrat O (2005) Physica A 353:21

    Article  CAS  Google Scholar 

  33. Hiamtup P, Sirivat A, Jamieson AM (2006) J Colloid Interface Sci 295:270

    Article  CAS  Google Scholar 

  34. Qi Y, Wen W (2002) J Phys D Appl Phys 35:2231

    Article  CAS  Google Scholar 

  35. Tsuda K, Takeda Y, Ogura H, Otsubo Y (2007) Colloid Surface A 299:262

    Article  CAS  Google Scholar 

  36. Kanu RC, Shaw MT (1998) J Rheol 42:657

    Article  CAS  Google Scholar 

  37. Block H, Rattay P (1995) In: Havelka KO, Filisko FE (eds) Progress in electrorheology. Plenum, New York, p 19

    Google Scholar 

  38. Ikazaki F, Kawai A, Uchida K, Kawakami T, Edamura K, Sakura K, Anzai H, Asako Y (1998) J Phys D Appl Phys 31:336

    Article  CAS  Google Scholar 

  39. Hao T, Kawai A, Ikazaki F (1998) Langmuir 14:1256

    Article  CAS  Google Scholar 

  40. Hao T, Kawai A, Ikazaki F (1999) Langmuir 15:918

    Article  CAS  Google Scholar 

  41. Yin JB, Zhao XP (2004) Chem Phys Lett 398:393

    Article  CAS  Google Scholar 

  42. Havriliak S, Negami S (1966) J Polym Sci C 16:99

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 7088352101) and the Grant Agency of the Czech Republic (202/06/0419). The authors also wish to thank to the National Natural Science Foundation of China (20236020), the National High Technology Research and Development Program of China (2006AA03Z358), and 973 Program (2004CB719500) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir Pavlinek or Chunzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Pavlinek, V., He, Y. et al. Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions. Colloid Polym Sci 287, 435–441 (2009). https://doi.org/10.1007/s00396-008-1985-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1985-9

Keywords

Navigation