Skip to main content
Log in

End effects in rotational viscometry I. No-slip shear-thinning samples in the Z40 DIN sensor

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Neglect of end effects in Couette rotational viscometry introduces a 10–30% error in the estimate of shear stress at the spindle surface. Actual deviations depend on the shear-thinning level of a given sample. We tackle the end effect for the standard sensor Z40 DIN according to the ISO 3219 by solving the related 2D boundary-value problem for a class of shear-thinning viscosity functions. The pseudosimilarity method of treating the primary data leaves an error of about 0.5% in shear stresses. Further reduction in the errors needs a full numerical simulation for each point of the primary data based on a suitable wide-range representation of the viscosity function. To support a high accuracy of torque calibrations, the effect of inertia on torque for Newtonian liquids in standard sensor Z40 DIN at Re < 500 is calculated using the FLUENT 6.2 commercial software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ancey C (2005) Solving the Couette inverse problem by using a wavelet-vaguelette decomposition. J Rheol 49:441–460

    Article  CAS  Google Scholar 

  • Astarita G (1990) The engineering reality of yield stress. J Rheol 34:275–277

    Article  Google Scholar 

  • Barnes HA (2000) A handbook of elementary rheology. University of Wales, Aberystwyth, UK

    Google Scholar 

  • Barnes HA, Walters K (1985) The yield stress myth? Rheol Acta 24:323–326

    Article  CAS  Google Scholar 

  • Code RK, Raal JD (1973) Rates of shear in coaxial cylinder viscometers. Rheol Acta 12:578–587

    Article  Google Scholar 

  • ISO 3219 (1994) Determination of viscosity using a rotational viscometer with defined shear rate (Plastics-polymer/Resins in the liquid state or as emulsions or dispersions). CEN, Brussels, Belgium (See also DIN 53 019)

    Google Scholar 

  • Krieger IM, Elrod H (1953) Direct determination of the flow curves of non-Newtonian fluids. II. Shearing rate in the concentric cylinder viscometer. J Appl Phys 24:134–136

    Article  CAS  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  CAS  Google Scholar 

  • Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88

    Article  Google Scholar 

  • Paddon DJ, Walters K (1979) On edge effects and related sources of error in rotational rheometry. Rheol Acta 18:565–575. DOI 10.1007/BF01520352

    Article  Google Scholar 

  • Roscoe R (1962) The end correction for rotation viscometers. Br J Appl Phys 13:362–366

    Article  Google Scholar 

  • Uby L, Hallgren G, Fahlgren M, Svensson T (2006) Searle and Couette rheometry: correction for arbitrary gap size and end effect of non-Newtonian fluids. In: 3rd Annual Rheology Conference, AERC 2006, Crete, Greece, 27–29 April 2006

  • Wein O (1976) The non-Newtonian creeping flow around a rotating spheroidal spindle. J Non-Newton Fluid Mech 1:357–370

    Article  CAS  Google Scholar 

  • Wein O (2004) Edge effects in rotational viscometry II. ZZ (Couette) and KK (coaxial Morse cones) sensors, no-slip pseudosimilarity. Research report ICPF no. 2004/8, Prague. Available as http://home.icpf.cas.cz/wein/Reports/AWS/(2004-8_ResRep.pdf); the related program: http://home.icpf.cas.cz/wein/Reports/AWS/(cL_nN_ZZ.exe)

  • Whorlow RW (1980) Rheological techniques. Ellis Horwood, Sussex, pp 136–142

    Google Scholar 

  • Wichterle K, Wein O (1978) Rotation of non-convex bodies in plastic media. Collect Czechoslov Chem Commun 43:86–94

    CAS  Google Scholar 

  • Williams RW (1979) Determination of viscometric data from the Brookfield R.V.T. viscometer. Rheol Acta 18:345–359. DOI 10.1007/BF01515828

    Article  Google Scholar 

  • Yeow YL, Ko WC, Tang PP (2000) Solving the inverse problem of Couette viscometry by Tikhonov regularization. J Rheol 44:1335–1351

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Grant Agency of the Czech Republic under contract nos. 104/04/0826, 104/06/P287, and 104/05/P554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Wein.

List of symbols

List of symbols

C :

total torque, Pa m3

c L :

correction on end effects, c L  = T / T L , see also Eq. 2

D= d / R :

normalized distance between a rim and an axial border, Fig. 1

E = η  / η 0 :

viscosity ratio in the normalized Cross model, Eq. 22

G = | V| = [(∂ X V)2 + (∂ Z V)2]1/2 :

normalized module of velocity gradient

h :

gap thickness, m

H = h/R :

normalized gap thickness, Fig. 1

K :

consistency coefficient for the power-law viscosity function, Pa sn

k H :

estimate of the transient region length within the gap, Fig. 1

l :

length of the gap between coaxial cylinders, m

L = l / R :

normalized length of the gap, Fig. 1

n :

global flow index for the power-law viscosity function

n′:

local flow-behavior index, Eq. 4

N :

intermediate flow index in the normalized Cross model, Eq. 22

\( q = {{\mathop \gamma \limits^. }} \mathord{\left/ {\vphantom {{{\mathop \gamma \limits^. }} {{\mathop \gamma \limits^. }_{I} }}} \right. \kern-\nulldelimiterspace} {{\mathop \gamma \limits^. }_{I} } \) :

normalized shear rate

Q = R shaft/R :

normalized shaft radius, Fig. 1

R :

radius of the spindle (inner rotating cylinder), m

Re = ΩR 2/ν :

Reynolds number, ν -kinematic viscosity, m2 s−1

s = σ / σ I :

normalized shear stress

s[q] = Y[q] q :

normalized viscosity function

S = σ R  / σ I :

normalized shear stress at the spindle surface for ideal Couette flow

T = C / 2πσ I R 3 :

normalized torque

T L :

T for ideal Couette flow, T L  = S L

T k,p :

contributions to T (k = C , G , A; p = srf, btm); Fig. 1, Eq. 10

V = ω / Ω :

normalized velocity field

\( W = \Omega \mathord{\left/ {\vphantom {\Omega {{\mathop {\gamma _{I} }\limits^. }}}} \right. \kern-\nulldelimiterspace} {{\mathop {\gamma _{I} }\limits^. }} \) :

normalized speed

X = r/R, Z = z/R :

normalized meridional coordinates

\( Y = {\eta {\mathop \gamma \limits^. }_{I} } \mathord{\left/ {\vphantom {{\eta {\mathop \gamma \limits^. }_{I} } {\sigma _{I} }}} \right. \kern-\nulldelimiterspace} {\sigma _{I} } \) :

normalized viscosity

Y[q] = s[q] / q. :

normalized viscosity function

α :

angle of the spindle cone, Fig. 1

\( {\mathop \gamma \limits^. } \) :

viscometric shear rate, s−1

\( {\mathop {\gamma _{I} }\limits^. } \) :

characteristic shear rate (a model parameter), s−1

Γ :

spindle contour in normalized meridional plane (X, Z)

\( \eta = \sigma \mathord{\left/ {\vphantom {\sigma {{\mathop \gamma \limits^. }}}} \right. \kern-\nulldelimiterspace} {{\mathop \gamma \limits^. }} \) :

viscosity, Pa s

κ = R / (h + R):

ratio of radii of the inner to outer cylinder

σ :

viscometric shear stress, Pa

σ I :

characteristic shear stress (a model parameter), Pa

σ R :

shear stress at the spindle surface for ideal Couette flow, Pa, Eq.  (2)

ω(r, z):

meridional field of angular speed in liquid, rad s−1

Ω :

angular speed of the spindle, rad s−1

[..]:

any representation of the viscosity function

Subscripts, superscripts:

 

 L, C, G, A :

contours of the sensor in the (X, Y) plane, Fig. 1: ideaL gap, Cylinder faces, Gap entrance, Axis or shAft;

 srf, btm:

dividing the overall domain at the surface and bottom parts, Fig. 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wein, O., Vecer, M. & Havlica, J. End effects in rotational viscometry I. No-slip shear-thinning samples in the Z40 DIN sensor. Rheol Acta 46, 765–772 (2007). https://doi.org/10.1007/s00397-007-0180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0180-0

Keywords

Navigation