Skip to main content
Log in

Shear rheology of carbon nanotube suspensions

  • Review
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The shear rheology of carbon nanotube suspensions is reviewed from the perspective of colloid and polymer science. In the semi-dilute to concentrated regimes, the nature of the equilibrium or quiescent state is often dominated by nanotube entanglement and strong attractive inter-particle interactions that favor the formation of a disordered network or gel. The strength of this network with respect to the applied stress dictates the development of mesoscale structural anisotropy, first through a global yield stress and then through a critical stress for homogenization. For concentrated suspensions, the nematic liquid-crystalline order anticipated for high-aspect-ratio rigid rods has been observed in a few select scenarios. The opportunity for deeper theoretical insight is emphasized and intuitive physical arguments are offered that might serve as a foundation for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alig I, Skipa T, Lellinger D, Potschke P (2008) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49(16):3524–3532

    Article  CAS  Google Scholar 

  • Badaire S, Zakri C, Maugey M, Derre A, Barisci JN, Wallace G, Poulin P (2005) Liquid crystals of DNA-stabilized carbon nanotubes. Adv Mater 17(13):1673–1676

    Article  CAS  Google Scholar 

  • Casey JP, Bachilo SM, Moran CH, Weisman RB (2008) Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy. ACS Nano 2(8):1738–1746

    Article  CAS  PubMed  Google Scholar 

  • Ceccia S, Ferri D, Tabuani D, Maffettone PL (2008) Rheology of carbon nanofiber-reinforced polypropylene. Rheol Acta 47(4):425–433

    Article  CAS  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2007) Dynamic consequences of the fractal network of nanotube-poly(ethylene oxide) nanocomposites. Phys Rev E 75(5):050403

    Article  ADS  Google Scholar 

  • Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41(14):5333–5338

    Article  CAS  ADS  Google Scholar 

  • Chatterjee T, Jackson A, Krishnamoorti R (2008) Hierarchical structure of carbon nanotube networks. J Am Chem Soc 130(22):6934–6935

    Article  CAS  PubMed  Google Scholar 

  • Cox RG (1971) Motion of long slender bodies in a viscous fluid Part 2; Shear flow. J Fluid Mech 45:625

    Article  MATH  ADS  Google Scholar 

  • Davis VA, Ericson LM, Parra-Vasquez ANG, Fan H, Wang YH, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE, Adams WW, Hauge RH, Smalley RE, Pasquali M (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37(1):154–160

    Article  CAS  ADS  Google Scholar 

  • Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47(3):257–281

    Article  CAS  Google Scholar 

  • Dogic Z, Purdy KR, Grelet E, Adams M, Fraden S (2004) Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran. Phys Rev E 69(5):051702

    Article  ADS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  • Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055

    Article  CAS  ADS  Google Scholar 

  • Fagan JA, Becker ML, Chun JH, Nie PT, Bauer BJ, Simpson JR, Hight-Walker A, Hobbie EK (2008) Centrifugal length separation of carbon nanotubes. Langmuir 24(24):13880–13889

    Article  CAS  PubMed  Google Scholar 

  • Fakhri N, Tsyboulski DA, Cognet L, Weisman RB, Pasquali M (2009) Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids. PNAS 106(34):14219–14223

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fardin MA, Lasne B, Cardoso O, Gregoire G, Argentina M, Decruppe JP, Lerouge S (2009) Taylor-like vortices in shear-banding flow of giant micelles. Phys Rev Lett 103(2):028302

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fry D, Langhorst B, Kim H, Grulke E, Wang H, Hobbie EK (2005) Anisotropy of sheared carbon-nanotube suspensions. Phys Rev Lett 95(3):038304

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fry D, Langhorst B, Wang H, Becker ML, Bauer BJ, Grulke EA, Hobbie EK (2006) Rheo-optical studies of carbon nanotube suspensions. J Chem Phys 124(5):054703

    Article  CAS  PubMed  ADS  Google Scholar 

  • Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolation of overlapping ellipsoids. Phys Rev E 52(1):819–828

    Article  CAS  ADS  Google Scholar 

  • Gittes F, MacKintosh FC (1998) Dynamic shear modulus of a semiflexible polymer network. Phys Rev E 58(2):R1241–R1244

    Article  CAS  ADS  Google Scholar 

  • Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50(21):4979–4997

    Article  CAS  Google Scholar 

  • Hobbie EK (2007) Shape of the isotropic-(para)nematic coexistence curve in sheared nanotube suspensions. Phys Rev E 75(1):012501

    Article  CAS  ADS  Google Scholar 

  • Hobbie EK, Fry DJ (2006) Nonequilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett 97(3):036101

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hobbie EK, Fry DJ (2007) Rheology of concentrated carbon nanotube suspensions. J Chem Phys 126(12):124907

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hobbie EK, Wang H, Kim H, Lin-Gibson S, Grulke EA (2003) Orientation of carbon nanotubes in a sheared polymer melt. Phys Fluids 15(5):1196–1202

    Article  CAS  ADS  Google Scholar 

  • Hobbie EK, Lin-Gibson S, Wang H, Pathak JA, Kim H (2004) Ubiquity of domain patterns in sheared viscoelastic fluids. Phys Rev E 69(6):061503

    Article  CAS  ADS  Google Scholar 

  • Hobbie EK, Fagan JA, Becker ML, Hudson SD (2009) Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes. ACS Nano 3(1):189–196

    Article  CAS  PubMed  Google Scholar 

  • Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):168102

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hough LA, Islam MF, Hammouda B, Yodh AG, Heiney PA (2006) Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett 6(2):313–317

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 92(4):048302

    Google Scholar 

  • Janmey PA, Mccormick ME, Rammensee S, Leight JL, Georges PC, Mackintosh FC (2007) Negative normal stress in semiflexible biopolymer gels. Nat Mater 6(1):48–51

    Article  CAS  PubMed  ADS  Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles in a viscous fluid. Proc R Soc Lond A 102:161–179

    Article  ADS  Google Scholar 

  • Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52(21):1891–1894

    Article  ADS  Google Scholar 

  • Kayatin MJ, Davis VA (2009) Viscoelasticity and shear stability of single-walled carbon nanotube/unsaturated polyester resin dispersions. Macromolecules 42(17):6624–6632

    Article  CAS  ADS  Google Scholar 

  • Kayser RF, Raveche HJ (1978) Bifurcation in Onsager’s model of the isotropic-nematic transition. Phys Rev A 17(6):2067–2072

    Article  CAS  ADS  Google Scholar 

  • Keshtkar M, Heuzey MC, Carreau PJ (2009) Rheological behavior of fiber-filled model suspensions: effect of fiber flexibility. J Rheol 53(3):631–650

    Article  CAS  ADS  Google Scholar 

  • Koch DL (1995) A model for orientational diffusion in fiber suspensions. Phys Fluids 7(8):2086–2088

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Koenderink GH, Atakhorrami M, MacKintosh FC, Schmidt CF (2006) High-frequency stress relaxation in semiflexible polymer solutions and networks. Phys Rev Lett 96(13):138307

    Article  CAS  PubMed  ADS  Google Scholar 

  • Landi BJ, Ruf HJ, Worman JJ, Raffaelle RP (2004) Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J Phys Chem B 108(44):17089–17095

    Article  CAS  Google Scholar 

  • Lee HS, Yun CH (2008) Translational and rotational diffusions of multiwalled carbon nanotubes with static bending. J Phys Chem C 112(29):10653–10658

    Article  CAS  Google Scholar 

  • Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92(4):048302

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ma AWK, Mackley MR, Rahatekar SS (2007) Experimental observation on the flow-induced assembly of carbon nanotube suspensions to form helical bands. Rheol Acta 46(7):979–987

    Article  CAS  Google Scholar 

  • Ma AWK, Chinesta F, Mackley MR (2009) The rheology and modeling of chemically treated carbon nanotubes suspensions. J Rheol 53(3):547–573

    Article  CAS  ADS  Google Scholar 

  • Marceau S, Dubois P, Fulchiron R, Cassagnau P (2009) Viscoelasticity of Brownian carbon nanotubes in PDMS semidilute regime. Macromolecules 42(5):1433–1438

    Article  CAS  ADS  Google Scholar 

  • Mohraz A, Moler DB, Ziff RM, Solomon MJ (2004) Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys Rev Lett 92(15):155503

    Article  PubMed  ADS  Google Scholar 

  • Moulton SE, Maugey M, Poulin P, Wallace GG (2007) Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J Am Chem Soc 129(30):9452–9457

    Article  CAS  PubMed  Google Scholar 

  • Montesi A, Pena AA, Pasquali M (2004) Vorticity alignment and negative normal stresses in sheared attractive emulsions. Phys Rev Lett 92(5):058303

    Article  PubMed  ADS  Google Scholar 

  • Morse DC (1998) Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys Rev E 58(2):R1237–R1240

    Article  CAS  ADS  Google Scholar 

  • Oldenbourg R, Wen X, Meyer RB, Caspar DLD (1988) Orientational distribution function in nematic tobacco-mosaic-virus liquid-crystals measured by X-ray-diffraction. Phys Rev Lett 61(16):1851–1854

    Article  CAS  PubMed  ADS  Google Scholar 

  • Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47(3):283–300

    Article  CAS  Google Scholar 

  • Osuji CO, Weitz DA (2008) Highly anisotropic vorticity aligned structures in a shear thickening attractive colloidal system. Soft Matter 4(7):1388–1392

    Article  CAS  Google Scholar 

  • Parra-Vasquez ANG, Stepanek I, Davis VA, Moore VC, Haroz EH, Shaver J, Hauge RH, Smalley RE, Pasquali M (2007) Macromolecules 40(11):4043–4047

    Article  CAS  ADS  Google Scholar 

  • Pujari S, Rahatekar SS, Gilman JW, Koziol KK, Windle AH, Burghardt WR (2009) Orientation dynamics in multiwalled carbon nanotube dispersions under shear flow. J Chem Phys 130(21):214903

    Article  PubMed  ADS  Google Scholar 

  • Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol 50(5):599–610

    Article  CAS  ADS  Google Scholar 

  • Rahatekar SS, Koziol KK, Kline SR, Hobbie EK, Gilman JW, Windle AH (2009) Length-dependent mechanics of carbon-nanotube networks. Adv Mater 21(8):874–878

    Article  CAS  Google Scholar 

  • Rahnama M, Koch DL, Shaqfeh ESG (1995) The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear-flow. Phys Fluids 7(3):487–506

    Article  MATH  CAS  ADS  Google Scholar 

  • Rai PK, Pinnick RA, Parra-Vasquez ANG, Davis VA, Schmidt HK, Hauge RH, Smalley RE, Pasquali M (2006) Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J Am Chem Soc 128(2):591–595

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan S, Chen YL, Schweizer KS, Zukoski CF (2004) Elasticity and clustering in concentrated depletion gels. Phys Rev E 70(4):040401

    Article  CAS  ADS  Google Scholar 

  • Ripoll M, Holmqvist P, Winkler RG, Gompper G, Dhont JKG, Lettinga MP (2008) Attractive colloidal rods in shear flow. Phys Rev Lett 101(16):168302

    Article  CAS  PubMed  ADS  Google Scholar 

  • Schoch AB, Shull KR, Brinson LC (2008) Junction-controlled elasticity of single-walled carbon nanotube dispersions in acrylic copolymer gels and solutions. Macromolecules 41(12):4340–4346

    Article  CAS  ADS  Google Scholar 

  • Shih WH, Shih WY, Kim SI, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42(8):4772–4779

    Article  CAS  PubMed  ADS  Google Scholar 

  • Silvera-Batista CA, Weinberg P, Butler JE, Ziegler KJ (2009) Long-term improvements to photoluminescence and dispersion stability by flowing SDS-SWNT suspensions through microfluidic channels. J Am Chem Soc 131(35):12721–12728

    Article  CAS  PubMed  Google Scholar 

  • Song W, Kinloch IA, Windle AH (2003) Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302(5649):1363

    Article  CAS  PubMed  Google Scholar 

  • Speranza A, Sollich P (2003) Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity. Phys Rev E 67(6):061702

    Article  ADS  Google Scholar 

  • Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85(2):449–452

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wenseleers W, Vlasov II, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A (2004) Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv Funct Mater 14(11):1105–1112

    Article  CAS  Google Scholar 

  • Zhang SJ, Kumar S (2008) Carbon nanotubes as liquid crystals. Small 4(9):1270–1283

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Kinloch IA, Windle AH (2006) Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett 6(3):568–572

    Article  PubMed  ADS  Google Scholar 

  • Zhou W, Fischer JE, Heiney PA, Fan H, Davis VA, Pasquali M, Smalley RE (2005) Single-walled carbon nanotubes in superacid: X-ray and calorimetric evidence for partly ordered H2SO4. Phys Rev B 72(4):045440

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik K. Hobbie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobbie, E.K. Shear rheology of carbon nanotube suspensions. Rheol Acta 49, 323–334 (2010). https://doi.org/10.1007/s00397-009-0422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0422-4

Keywords

Navigation