Skip to main content
Log in

The electrorheological response of elongated particles

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A particle level simulation model is proposed for investigating the effects of elongated particles on the microstructure and field-induced flow response in electrorheological fluids. The particles are modelled as a collection of spherical subunits joined by Hookean-type connectors, which enables the modelling of the particle motion through the Newtonian carrier liquid. Electrostatic polarisation of each particle leads to a torque, as well as interaction forces between the particles. The simulation results show a stress–strain response that demonstrates the yielding behaviour reported in electrorheological systems. The microstructural changes in the system are studied via a description of the orientational stress distribution in the system. The stress contribution arising from rotational effects is shown to be dependant on the average orientation vector of the particles at the commencement of the shearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn KH, Klingenberg DJ (1994) Relaxation of polydisperse electrorheological suspensions. J Rheol 38(3):713–741

    Article  ADS  Google Scholar 

  • Anderson RA (1992) Effects of finite conductivity in electrorheological fluids. In: Tao R (ed) Proceedings of the 3rd international conference of electrorheological fluids. World Scientific Co, Singapore, pp 81–90

    Google Scholar 

  • Asano K, Suto H, Yatsuzuka K (1997) Influence of the particle configuration on electrorheological effect. J Electrost 40–41:573–578

    Article  Google Scholar 

  • Bica I (2006) Advances in magnetorheological suspension: production and properties. J Ind Eng Chem 12(4):501–515

    CAS  Google Scholar 

  • Block H, Kelly JP (1988) Electrorheology. J Phys D Appl Phys 21:1661–1677

    Article  CAS  ADS  Google Scholar 

  • Cao JG, Huang JP, Zhou LW (2006) Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation. J Phys Chem B 110(24):11635–11639

    Article  CAS  PubMed  Google Scholar 

  • Chin BD, Winter HH (2002) Field induced gelation, yield stress, and fragility of an electro-rheological suspension. Rheol Acta 41:265–275

    Article  CAS  Google Scholar 

  • Davis LC (1992) Polarization forces and conductivity effects in electrorheological fluids. J Appl Phys 72(1):1334–1340

    Article  CAS  ADS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, London

    Google Scholar 

  • Ekwebelam C, See H (2009) Microstructural investigations of the yielding behaviour of bidisperse magnetorheological fluids. Rheol Acta 48:19–32

    Article  CAS  Google Scholar 

  • Goldsmith HL, Mason SG (1967) In: Eirich FR (ed) Rheology: theory and applications, vol 4. Academic Press, New York, p 85

    Google Scholar 

  • Hao T (2001) Electrorheological fluids. Adv Mater 13(24):1847–1857

    Article  CAS  Google Scholar 

  • Hao T (2005) Electrorheological fluids: the non-aqueous suspensions. Elsevier, Amsterdam

    Google Scholar 

  • Halsey TC, Martin JE, Adolf D (1992) Rheology of electrorheological fluids. Phys Rev Lett 68(10):1519–1523

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ikazaki F, Kawai A, Uchida K, Kawakami T, Edamura K, Sakurai K, Anzai H, Asako Y (1998) Mechanisms of electrorheology: the effect of the dielectric property. J Phys D Appl Phys 31:336–347

    Article  CAS  ADS  Google Scholar 

  • Jeffrey GB (1923) The motion of ellipsoid particles immersed in a viscous fluid. Proc R Soc Lond A 102:161–179

    ADS  Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Joung CG (2006) Dynamic simulation of arbitrarily shaped particles in shear flow. Rheol Acta 46:143–152

    Article  Google Scholar 

  • Joung CG, Phan-Thien N, Fan XJ (2001) Direct simulation of flexible fibers. J Non-Newton Fluid Mech 99(1):1–36

    Article  MATH  CAS  Google Scholar 

  • Kanu RC, Shaw MT (1998) Enhanced electrorheological fluids using anisotropic particles. J Rheol 42(3):657–670

    Article  CAS  ADS  Google Scholar 

  • Kawai A, Uchida K, Ikazaki F (2002) Effects of shape and size of dispersoid on electrorheology. In: Bossis G (ed) Proceedings of the 8th international conference: electrorheological fluids and magnetorheological suspensions, Nice, France, 9–13 July 2001. World Scientific Publishing Co, Singapore, pp 626–632

    Chapter  Google Scholar 

  • Kim S, Karilla S (1991) Microhydrodynamics: principles and selected applications. Butterworth-Heinemann, Boston

    Google Scholar 

  • Kittipoomwong D, Klingenberg DJ, Ulicny JC (2005) Dynamic yield stress enhancement in bidisperse magnetorheological fluids. J Rheol 49(6):1521–1538

    Article  CAS  ADS  Google Scholar 

  • Kittipoomwong D, Klingenberg DJ, Shkel YM, Morris JF, Ulicny JC (2008) Transient behavior of electrorheological fluids in shear flow. J Rheol 52(1):225–241

    Article  CAS  ADS  Google Scholar 

  • Klingenberg DJ, van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspensions. I. Simulation in the point-dipole limit. J Chem Phys 94(9):6160–6169

    Article  CAS  ADS  Google Scholar 

  • Kuzhir P, López-López MT, Bossis G (2009) Magnetorheology of fiber suspensions, II. Theory. J Rheol 53(1):127–151

    Article  CAS  Google Scholar 

  • Lengalova A, Pavlinek V, Saha P, Quadrat O, Stejskal J (2003) The effect of dispersed particle size and shape on the elecrorheological behaviour of suspensions. Colloids Surf A 227:1–8

    Article  CAS  Google Scholar 

  • López-López MT, Kuzhir P, Bossis G (2009) Magnetorheology of fiber suspensions, I. Experimental. J Rheol 53(1):115–126

    Article  Google Scholar 

  • Martin JE, Anderson RA (1999) Electrostriction in field-structured composites: basis for a fast artificial muscle? J Chem Phys 111(9):4273–4280

    CAS  ADS  Google Scholar 

  • Otsubo Y (1999) Electrorheology of whisker suspensions. Colloids Surf A 153:459–466

    Article  CAS  Google Scholar 

  • Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R 17:57–103

    Article  Google Scholar 

  • Ramos-Tejada MM, Espin MJ, Perea R, Delgado AV (2009) Electrorheology of suspensions of elongated goethite particles. J Non-Newtonian Fluid Mech. 159:34–40

    Article  CAS  Google Scholar 

  • Rankin PJ, Klingenberg DJ (1998) The electrorheology of barium titanate suspensions. J Rheol 42(3):639–656

    Article  CAS  ADS  Google Scholar 

  • Ross RF, Klingenberg DJ (1997) Dynamic simulation of flexible fibers composed of linked rigid bodies. J Chem Phys 106(7):2949–2960

    Article  CAS  ADS  Google Scholar 

  • See H (1999) Advances in modeling the mechanisms and rheology of electrorheological fluids. Korea–Australia Rheol J 11:169–195

    Google Scholar 

  • See H (2004) Advances in electro-rheological fluids: materials, modeling and applications. J Ind Eng Chem 10:1132–1145

    CAS  Google Scholar 

  • See H, Doi M (1991) Aggregation kinetics in electro-rheological fluids. J Phys Soc Jpn 60(8):2778–2782

    Article  CAS  ADS  Google Scholar 

  • See H, Doi M (1992) Shear resistance of electrorheological fluids under time-varying electric fields. J Rheol 36(6):1143–1163

    Article  CAS  ADS  Google Scholar 

  • See H, Saito T (1996) Layered model of electrorheological fluid under flow. Rheol Acta 35(3):233–241

    Article  CAS  Google Scholar 

  • Shulman ZP, Kordonsky VI, Zaltsgendler EA, Prokhorov IV, Khusid BM, Demchuk SA (1986) Structure, physical properties and dynamics of magnetorheological suspensions. Int J Multiph Flow 12:935–955

    Article  CAS  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Takimoto JI, Minagawa K, Koyama K (1996) Numerical study of the response time of ER suspensions. In: Bullough WA (ed) Proceeding of the 5th international conference on electro-rheological fluids, magneto-rheological suspensions and associated technology, Sheffield, UK, 10–14 July 1995. World Scientific Publishing Co, Singapore, p 209

    Google Scholar 

  • Tan Z, Zou X, Zhang W, Jin Z (1999) Influences of the size and dielectric properties of particles on electrorheological response. Phys Rev E 59(3):3177–3181

    Article  CAS  ADS  Google Scholar 

  • Tao R, Jiang Q (1994) Simulation of structure formation in an electrorheological fluid. Phys Rev Lett 73(1):205–208

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tao R, Jiang Q (1998) Structural transitions of an electrorheological and magnetorheological fluid. Phys Rev E 57(5):5761–5765

    Article  CAS  ADS  Google Scholar 

  • Tsuda K, Takeda Y, Ogura H, Otsubo Y (2007) Electrorheological behavior of whisker suspensions under oscillatory shear. Colloids Surf A 299:262–267

    Article  CAS  Google Scholar 

  • Wang Z, Lin Z, Fang H, Tao R (1998) Dynamic response times of electrorheological fluids in steady shear. J Appl Phys 83(2):1125–1131

    Article  CAS  ADS  Google Scholar 

  • Whittle M (1990) Computer simulation of an electrorheological fluid. J Non-Newton Fluid Mech 37:233–263

    Article  MATH  CAS  Google Scholar 

  • Yamamoto S, Matsuoka T (1993) A method for dynamic simulation of rigid and flexible fibers in a flow field. J Chem Phys 98(1):644–651

    Article  ADS  Google Scholar 

  • Yamamoto S, Matsuoka T (1994) Viscosity of suspensions of rod-like particles: a numerical simulation method. J Chem Phys 100(4):3317–3324

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Yann Kae Kor acknowledges the support of the Postgraduate Scholarship in Electrorheological Research made available for this study, and the authors acknowledge the support of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Kae Kor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kor, Y.K., See, H. The electrorheological response of elongated particles. Rheol Acta 49, 741–756 (2010). https://doi.org/10.1007/s00397-010-0445-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0445-x

Keywords

Navigation