Skip to main content
Log in

Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson’s disease and related neurodegenerative disorders

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Oxidative stress including DNA oxidation is implicated in Parkinson’s disease (PD). We postulated that DNA repair enzymes such as 8-oxoguanosine DNA glycosylase (OGG1) are involved in the PD process. We performed immunohistochemical and biochemical studies on brains of patients with PD and those of patients with progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) as disease controls, and control subjects. We found higher expression levels of mitochondrial isoforms of OGG1 enzymes in the substantia nigra (SN) in cases of PD. Furthermore, Western blot analysis revealed high OGG1 levels in the SN of the patients with PD. Our results indicate the importance of oxidative stress within the susceptible lesions in the pathogenesis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 A

Similar content being viewed by others

References

  1. Alam ZI, Jenner A, Daniel SE, Lee AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increased in 8-hydroxyguanine level in substantia nigra. J Neurochem 69:1196–1203

    CAS  PubMed  Google Scholar 

  2. Albers DS, Augood SJ (2001) New insights into progressive supranuclear palsy. Trends Neurosci 24:347–353

    Article  CAS  PubMed  Google Scholar 

  3. Albers DS, Augood SJ, Park LC, Browne SE, Martin DM, Adamson J, Hutton M, Standaert DG, Vonsattel JP, Gibson GE, Beal MF (2000) Frontal lobe dysfunction in progressive supranuclear palsy: evidence for oxidative stress and mitochondrial impairment. J Neurochem 74:878–881

    Article  CAS  PubMed  Google Scholar 

  4. Arai K, Morishita K, Shinmura K, Kohno T, Kim SR, Nohmi T, Taniwaki M, Ohwada S, Yokota J (1997) Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 14:2857–2861

    Article  CAS  PubMed  Google Scholar 

  5. Bohr VA, Stevnsner T, Souza-Pinto NC de (2002) Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286:127–134

    Article  CAS  PubMed  Google Scholar 

  6. Castellani R, Smith MA, Richey PL, Kalaria R, Gambetti P, Parry G (1995) Evidence for oxidative stress in Pick disease and corticobasal degeneration. Brain Res 696:268–271

    Article  CAS  PubMed  Google Scholar 

  7. De Souza-Pinto NC, Hogue BA, Bohr VA (2001) DNA repair and aging in mouse liver: 8-oxodG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic Biol Med 30:916–923

    Article  CAS  PubMed  Google Scholar 

  8. Dickson DW (1999) Neuropathogenic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 246 Suppl 2:II/6–15

    Google Scholar 

  9. Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL (2000) Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem 275:37518–37523

    Article  CAS  PubMed  Google Scholar 

  10. Gibb WRG, Luthert PJ, Marsden CD (1989) Corticobasal degeneration. Brain 112:1171–1192

    PubMed  Google Scholar 

  11. Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 30:563–571

    CAS  PubMed  Google Scholar 

  12. Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T (1991) Age-associated accumulation of 8-hydroxyguanosine mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179:1023–1029

    CAS  PubMed  Google Scholar 

  13. Hayakawa M, Hattori K, Sugiyama S, Ozawa T (1992) Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 189:979–985

    CAS  PubMed  Google Scholar 

  14. Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N (1998) Tom40 forms the hydrophilic channel of the mitochondria import pore for preprotein. Nature 395:516–521

    Article  CAS  PubMed  Google Scholar 

  15. Kang D, Nishida J, Iyama A, Nakabeppu Y, Furuichi M, Fujiwara T, Sekiguchi M, Takeshige K (1995) Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J Biol Chem 270:14659–14665

    Article  CAS  PubMed  Google Scholar 

  16. Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degenerations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 281-343

  17. Malessa S, Gaymard B, Rivaud S, Cervera P, Hirsch E, Verny M, Duyckaerts C, Agid Y, Pierrot-Deseilligny C (1994) Role of pontine nuclei damage in smooth pursuit impairment of progressive supranuclear palsy: a clinical-pathologic study. Neurology 44:716–721

    CAS  PubMed  Google Scholar 

  18. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA showed marked age-dependent increases in human brain. Ann Neurol 34:609–616

    CAS  PubMed  Google Scholar 

  19. Michaels ML, Pham L, Cruz C, Miller JH (1991) MutM, a protein that prevents G.C→T.A transversions, is formamidopyrimidine-DNA glycosylase. Nucleic Acids Res 19:3629–3632

    CAS  PubMed  Google Scholar 

  20. Michaels ML, Cruz C, Grollman AP, Miller JH (1992) Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA 89: 7022–7025

    CAS  PubMed  Google Scholar 

  21. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y(1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    CAS  PubMed  Google Scholar 

  22. Mori H, Nishimura M, Namba Y, Oda M (1994) Cortiobasal degeneration: a disease with widespread appearance of abnormal tau and neurofibrillary tanges, and its relation to progressive supranuclear palsy. Acta Neuropathol 88:113–121

    CAS  PubMed  Google Scholar 

  23. Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Bio Cell 10:1637-1652

    CAS  Google Scholar 

  24. Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP Wilson GL (2002) Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 277:44932–44937

    Article  CAS  PubMed  Google Scholar 

  25. Rapaport D, Neupert W (1999) Biogenesis of TOM40, core component of the TOM complex of mitochondria. J Cell Biol 146:321–331

    Article  CAS  PubMed  Google Scholar 

  26. Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467

    CAS  PubMed  Google Scholar 

  27. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet I:1269

    Article  Google Scholar 

  28. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    CAS  PubMed  Google Scholar 

  29. Shimura-Miura H, Hattori N, Kang D, Miyako K, Nakabeppu Y, Mizuno Y (1999) Increased 8-oxo-dGTPase in the mitochondria of substantia nigra neurons in Parkinson’s disease. Ann Neurol 46:920–924

    Article  CAS  PubMed  Google Scholar 

  30. Swerdlow RH, Golbe LI, Parks JK, Cassarino DS, Binder DR, Grawey AE, Litvan I, Bennett JP Jr, Wooten GF, Parker WD (2000) Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. J Neurochem 75:1681–1684

    Article  CAS  PubMed  Google Scholar 

  31. Tajiri T, Maki H, Sekiguchi M (1995) Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res 336:257–267

    CAS  PubMed  Google Scholar 

  32. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Makiko Iijima for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukae, J., Takanashi, M., Kubo, Si. et al. Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson’s disease and related neurodegenerative disorders. Acta Neuropathol 109, 256–262 (2005). https://doi.org/10.1007/s00401-004-0937-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0937-9

Keywords

Navigation