Skip to main content

Advertisement

Log in

Axonal transport defects: a common theme in neurodegenerative diseases

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

A core pathology central to most neurodegenerative diseases is the misfolding, fibrillization and aggregation of disease proteins to form the hallmark lesions of specific disorders. The mechanisms underlying these brain-specific neurodegenerative amyloidoses are the focus of intense investigation and defective axonal transport has been hypothesized to play a mechanistic role in several neurodegenerative disorders; however, this hypothesis has not been extensively examined. Discoveries of mutations in human genes encoding motor proteins responsible for axonal transport do provide direct evidence for the involvement of axonal transport in neurodegenerative diseases, and this evidence is supported by studies of animal models of neurodegeneration. In this review, we summarize recent findings related to axonal transport and neurodegeneration. Focusing on specific neurodegenerative diseases from a neuropathologic perspective, we highlight discoveries of human motor protein mutations in some of these diseases, as well as illustrate new insights from animal models of neurodegenerative disorders. We also review the current understanding of the biology of axonal transport including major recent findings related to slow axonal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baas PW (2002) Microtubule transport in the axon. Int Rev Cytol 212:41–62

    CAS  PubMed  Google Scholar 

  2. Baas PW, Brown A (1997) Slow axonal transport: the polymer transport model. Trends Cell Biol 7:380–384

    Article  Google Scholar 

  3. Ben Othmane KB, Middleton LT, Loprest LJ, Wilkinson KM, Lennon F, Rozear MP, Stajich JM, Gaskell PC, Roses AD, Pericak-Vance MA, Vance JM (1993) Localization of a gene (CMT2A) for autosomal dominant Charcot-Marie-Tooth disease type 2 to chromosome 1p and evidence of genetic heterogeneity. Genomics 17:370–375

    Article  PubMed  Google Scholar 

  4. Benstead TJ, Grant IA (2001) Progress in clinical neurosciences: Charcot-Marie- Tooth disease and related inherited peripheral neuropathies. Can J Neurol Sci 28:199–214

    CAS  PubMed  Google Scholar 

  5. Brown A (2003) Axonal transport of membranous and nonmembranous cargoes: a unified perspective J Cell Biol 160:817–821 (See also the animation of axonal transport that accompanies this paper at http://www.jcb.org/cgi/content/full/jcb.200212017/DC1)

    Google Scholar 

  6. Deacon SW, Serpinskaya AS, Vaughan PS, Fanarraga ML, Vernos I, Vaughan KT, Gelfand VI (2003) Dynactin is required for bidirectional organelle transport. J Cell Biol 160:297–301

    Article  CAS  PubMed  Google Scholar 

  7. Duda JE, Giasson BI, Mabon M, Lee VM-Y, Trojanowski JQ (2002) Novel antibodies to oxidized alpha-synuclein reveal abundant neuritic pathology in Lewy body diseases. Ann Neurol 52:205–210

    Article  CAS  PubMed  Google Scholar 

  8. Ferreira A, Caceres A, Kosik KS (1993) Intraneuronal compartments of the amyloid precursor protein. J Neurosci 13:3112–3123

    Google Scholar 

  9. Forman MS, Trojanowski JQ, Lee VM-Y (2004) Neurodegenerative diseases: a decade of revolutionary discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055–1063

    Google Scholar 

  10. Gajdusek DC (1985) Hypothesis: Interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N Engl J Med 312:714–719

    Google Scholar 

  11. Gunawardena S, Goldstein LS (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32:389–401

    Article  CAS  PubMed  Google Scholar 

  12. Gunawardena S, Goldstein LS (2004) Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol 58:258–271

    Article  CAS  PubMed  Google Scholar 

  13. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    CAS  PubMed  Google Scholar 

  14. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, et al (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  CAS  PubMed  Google Scholar 

  15. Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine CS, Cruaud C, Durr A, Wincker P, et al (1999) Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 23:296–303

    Article  CAS  PubMed  Google Scholar 

  16. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  CAS  PubMed  Google Scholar 

  17. Higuchi M, Lee VM-Y, Trojanowski JQ (2002) Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2:131–150

    Article  CAS  PubMed  Google Scholar 

  18. Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VM-Y (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice engineered to overexpress the shortest human tau isoform. Neuron 24:751–762

    Article  CAS  PubMed  Google Scholar 

  19. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. 273:26292–26294

  20. Jensen PH, Li JY, Dahlstrom A, Dotti CG (1999) Axonal transport of synucleins is mediated by all rate components. Eur J Neurosci 11:3369–3376

    Google Scholar 

  21. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (1993) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. J Neurosci 13:3112–3123

    Google Scholar 

  22. King SJ, Schroer TA (2000) Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol 2:20–24

    Google Scholar 

  23. Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport Proc Natl Acad Sci USA 87:1561–1565

    Google Scholar 

  24. Kotzbauer P, Giasson B, Kravitz A, Golbe LI, Mark MH, Trojanowski JQ, Lee, VM-Y (2004) In vitro and postmortem brain studies link fibrillization of both alpha-synuclein and tau to familial Parkinson’s disease caused by the A53T alpha-synuyclein mutation. Exp Neurol 187:279–288

    Article  CAS  PubMed  Google Scholar 

  25. LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J, Tokito M, Van Winkle T, Howland DS, Holzbaur EL (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:715–727

    Article  CAS  PubMed  Google Scholar 

  26. Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212–221

    Article  CAS  Google Scholar 

  27. Lee VM-Y, Daughenbaugh R, Trojanowski JQ (1994) Microtubule stabilizing drugs for the treatment of Alzheimer’s disease. Neurobiol Aging 15:S87–S89

    Article  PubMed  Google Scholar 

  28. Li W, Hoffman PN, Stirling W, Price DL, Lee MK (2004) Axonal transport of human alpha-synuclein slows with aging but is not affected by familial Parkinson’s disease-linked mutations. J Neurochem 88:401–410

    CAS  PubMed  Google Scholar 

  29. McDermott CJ, White K, Bushby K, Shaw PJ (2000) Hereditary spastic paraparesis: a review of new developments. J Neurol Neurosurg Psychiatry 69:150–160

    Article  CAS  PubMed  Google Scholar 

  30. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST (2002) Glycogen synthase kinase-3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 21:281–293

    Article  CAS  PubMed  Google Scholar 

  31. Muresan V (2000) One axon, many kinesins: What’s the logic? J Neurocytol 29:799–818

    Article  CAS  PubMed  Google Scholar 

  32. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220

    CAS  PubMed  Google Scholar 

  33. Nakagawa T, Tanaka Y, Matsuoka E, Kondo S, Okada Y, Noda Y, Kanai Y, Hirokawa N (1997) Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome. Proc Natl Acad Sci USA 94:9654–9659

    Google Scholar 

  34. Norris EH, Giasson BI, Lee VM (2004) Alpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 60:17–54

    PubMed  Google Scholar 

  35. Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J (2003)Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508

    Google Scholar 

  36. Prudhomme JF, Brice A, Fontaine B, Heilig B, Weissenbach J (1999) Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 23:296–303

    Article  CAS  PubMed  Google Scholar 

  37. Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ, et al (2003) Mutant dynactin in motor neuron disease. Nat Genet 33:455–456

    Google Scholar 

  38. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, Graham FL, Gaskell PC, Dearlove A, Pericak-Vance MA, et al (2002) A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 71:1189–1194

    Article  CAS  PubMed  Google Scholar 

  39. Roy S, Coffee P, Smith G, Liem RKH, Brady ST, Black MM (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J Neurosci 20:6849–6861

    Google Scholar 

  40. Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, Young M, Faber PW, MacDonald ME, McPhaul MJ, Brady ST (2003) Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40:41–52

    Article  CAS  PubMed  Google Scholar 

  41. Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K, Nihonmatsu N, Mercken M, Yamaguchi H, Sugihara S, Wolozin B (1998) Presenilin 1 associates with glycogen synthase kinase-3 beta and its substrate tau. Proc Natl Acad Sci USA 95:9637–9641

    Google Scholar 

  42. Tesseur I, Van Dorpe J, Bruynseels K, Bronfman F, Sciot R, Van Lommel A, Van Leuven F (2000) Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am J Pathol 157:1495–1510

    CAS  PubMed  Google Scholar 

  43. Trojanowski JQ, Mattson MP (2003) Overview of protein aggregation in single, double, and triple neurodegenerative brain amyloidoses. Neuromolecular Med 4:1–6

    Google Scholar 

  44. Trojanowski JQ, Ishihara T, Higuchi M, Yoshiyama Y, Hong M, Zhang B, Forman MS, Zhukareva V, Lee VM-Y (2002) Amyotrophic lateral sclerosis/parkinsonism dementia complex: transgenic mice provide insights into mechanisms underlying a common tauopathy in an ethnic minority on Guam. Exp Neurol 176:1–11

    Google Scholar 

  45. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  PubMed  Google Scholar 

  46. Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152:959–970

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Ho C-L, Sun D, Liem RKH, Brown A (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2:137–141

    Google Scholar 

  48. Waterman-Storer CM, Karki S, Kuznetsov SA, Tabb JS, Weiss DG, Langford GM, Holzbaur ELF (1997) The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc Natl Acad Sci USA 94:12180–12185

    Google Scholar 

  49. Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56

    Google Scholar 

  50. Zhang B, Tu P-H, Abtahian F, Trojanowski JQ, Lee VM-Y (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315

    Article  CAS  PubMed  Google Scholar 

  51. Zhang B, Higuchi M, Yoshiyama Y, Forman MS, Ishihara T, Hong M, Trojanowski JQ, Lee VM-Y (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24:4657–4667

    Google Scholar 

  52. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, Joyce S, Li C, Toleikis PM, et al (2004) Microtubule binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a murine neurodegenerative tauopathy model. Proc Natl Acad Sci (in press)

  53. Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y, et al (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105:587–597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the patients and their caregivers who have facilitated research on these neurodegenerative diseases. V.M.Y.L. is the John H. Ware, 3rd Professor of Alzheimer’s disease research. J.Q.T. is the William Maul Measey-Truman G. Schnabel, Jr. Professor of Geriatric Medicine and Gerontology. The authors acknowledge support for their research from the NIH [P01 AG09215, P30 AG10124, P01 AG11542, P01 AG14382, P01 AG14449, P01 AG17586, P01 NS044233]. Due to space limitations, many references to primary literature cannot be included but they may be found in reviews cited here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Q. Trojanowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Zhang, B., Lee, V.MY. et al. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109, 5–13 (2005). https://doi.org/10.1007/s00401-004-0952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0952-x

Keywords

Navigation