Skip to main content

Advertisement

Log in

Optic nerve degeneration in the DBA/2NNia mouse: is the lamina cribrosa important in the development of glaucomatous optic neuropathy?

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

To study optic nerve (ON) degeneration in the DBA/2NNia (DBA) mouse, a species lacking a lamina cribrosa and a model for secondary angle-closure glaucoma, serial semi- and ultra-thin sectioning of the myelinated ON and of the ON head was performed and sections evaluated qualitatively and quantitatively by light and electron microscopy. Immunohistochemistry was performed using antibodies against collagen type I, III, VI, laminin, and connexin43. The major finding on the myelinated ON was a significant decrease in cross section area during ON degeneration which was paralleled by a loss of axons and an increase in microglia. The number of astrocytes and blood vessels did not change. The major findings on the ON papilla were that ON heads with only mild degeneration showed a pronounced focal degeneration around the central retinal artery. In more severely degenerated ON, newly formed bundles of collagen type VI were located between astrocyte processes within the ON head. In a species that has no lamina cribrosa, DBA mice can develop typical signs of glaucomatous optic neuropathy. The entrance of the central retinal vessels into the ONH seems to be a preferentially vulnerable region for axon loss in this mouse model. In addition, astrocytes in the ON head form extracellular material similar to that found in human glaucomatous eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ambati BK, Rizzo JF III (2001) Nonglaucomatous cupping of the optic disc Int Ophthalmol Clin 41:139–149

    Article  PubMed  CAS  Google Scholar 

  2. Anderson DR, Cynader MS (1997) Glaucomatous optic nerve cupping as an optic neuropathy Clin Neurosci 4:274–278

    PubMed  CAS  Google Scholar 

  3. Bayer AU, Neuhardt T, May AC, Martus P, Maag KP, Brodie S, Lutjen-Drecoll E, Podos SM, Mittag T (2001) Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma Invest Ophthalmol Vis Sci 42:1258–1265

    PubMed  CAS  Google Scholar 

  4. Cotrina ML, Gao Q, Lin HC, Nedergaard M (2001) Expression and function of astrocytic gap junctions in aging Brain Res 901:55–61

    Article  PubMed  CAS  Google Scholar 

  5. Danias J, Lee KC, Zamora MF, Chen B, Shen F, Filippopoulos T, Su Y, Goldblum D, Podos SM, Mittag T (2003) Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice Invest Ophthalmol Vis Sci 44:5151–5162

    Article  PubMed  Google Scholar 

  6. Dyka FM, May CA, Enz R (2004) Metabotropic glutamate receptors are differentially regulated under elevated intraocular pressure J Neurochem 90:190–202

    Article  PubMed  CAS  Google Scholar 

  7. Emery JM, Landis D, Paton D, Boniuk M, Craig JM (1974) The lamina cribrosa in normal and glaucomatous human eyes Trans Am Acad Ophthalmol Otolaryngol 78:290–297

    Google Scholar 

  8. Fukuchi T, Sawaguchi S, Hara H, Shirakashi M, Iwata K (1992) Extracellular matrix changes of the optic nerve lamina cribrosa in monkey eyes with experimentally chronic glaucoma Graefes Arch Clin Exp Ophthalmol 230:421–427

    Article  PubMed  CAS  Google Scholar 

  9. Furuyoshi N, Furuyoshi M, May CA, Hayreh SS, Alm A, Lutjen-Drecoll E (2000) Vascular and glial changes in the retrolaminar optic nerve in glaucomatous monkey eyes Ophthalmologica 214:24–32

    Article  PubMed  CAS  Google Scholar 

  10. Gaasterland D, Tanishima T, Kuwabara T (1978) Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping Invest Ophthalmol Vis Sci 17:838–846

    PubMed  CAS  Google Scholar 

  11. Greenfield DS (1999) Glaucomatous versus nonglaucomatous optic disc cupping: clinical differentiation Semin Ophthalmol 14:95–108

    Article  PubMed  CAS  Google Scholar 

  12. Hayreh SS, Pe’er J, Zimmerman MB (1999) Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys J Glaucoma 8:56–71

    Article  PubMed  CAS  Google Scholar 

  13. Hernandez MR (1992) Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. Changes in elastic fibers in primary open-angle glaucoma Invest Ophthalmol Vis Sci 33:2891–2903

    PubMed  CAS  Google Scholar 

  14. Hernandez MR (2000) The optic nerve head in glaucoma: role of astrocytes in tissue remodeling Prog Retin Eye Res 19:297–321

    Article  PubMed  CAS  Google Scholar 

  15. Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH (1989) Age-related changes in the extracellular matrix of the human optic nerve head Am J Ophthalmol 107:476–484

    PubMed  CAS  Google Scholar 

  16. Hernandez MR, Andrzejewska WM, Neufeld AH (1990) Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma Am J Ophthalmol 109:180–188

    PubMed  CAS  Google Scholar 

  17. Hernandez MR, Ye H, Roy S (1994) Collagen type IV gene expression in human optic nerve heads with primary open angle glaucoma Exp Eye Res 59:41–51

    Article  PubMed  CAS  Google Scholar 

  18. John SWM, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice Invest Ophthalmol Vis Sci 39:951–962

    PubMed  CAS  Google Scholar 

  19. Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN (2004) Regional optic nerve damage in experimental mouse glaucoma Invest Ophthalmol Vis Sci 45:4352–4358

    Article  PubMed  Google Scholar 

  20. May CA (2003) The optic nerve head region of the aged rat: an immunohistochemical investigation Curr Eye Res 26:347–354

    Article  PubMed  Google Scholar 

  21. May CA, Lutjen-Drecoll E (2002) Morphology of the murine optic nerve Invest Ophthalmol Vis Sci 43:2206–2212

    PubMed  Google Scholar 

  22. Morrison JC, Dorman-Pease ME, Dunkelberger GR, Quigley HA (1990) Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma Arch Ophthalmol 108:1020–1024

    PubMed  CAS  Google Scholar 

  23. Netland PA, Ye H, Streeten BW, Hernandez MR (1995) Elastosis of the lamina cribrosa in pseudoexfoliation syndrome with glaucoma Ophthalmology 102:878–886

    PubMed  CAS  Google Scholar 

  24. Pena JD, Netland PA, Vidal I, Dorr DA, Rasky A, Hernandez MR (1998) Elastosis of the lamina cribrosa in glaucomatous optic neuropathy Exp Eye Res 67:517–524

    Article  PubMed  CAS  Google Scholar 

  25. Pena JD, Agapova O, Gabelt BT, Levin LA, Lucarelli MJ, Kaufman PL, Hernandez MR (2001) Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure Invest Ophthalmol Vis Sci 42:2303–2314

    PubMed  CAS  Google Scholar 

  26. Quigley EN, Quigley HA, Pease ME, Kerrigan LA (1996) Quantitative studies of elastin in the optic nerve heads of persons with primary open-angle glaucoma Ophthalmology 103:1680–1685

    PubMed  CAS  Google Scholar 

  27. Quigley HA (1985) Early detection of glaucomatous damage. II. Changes in the appearance of the optic disk Surv Ophthalmol 30:117–126

    Article  Google Scholar 

  28. Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport Invest Ophthalmol Vis Sci 19:137–152

    PubMed  CAS  Google Scholar 

  29. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma Am J Ophthalmol 95:673–691

    PubMed  CAS  Google Scholar 

  30. Quigley HA, Brown A, Dorman-Pease ME (1991) Alterations in elastin of the optic nerve head in human and experimental glaucoma Br J Ophthalmol 75:552–557

    Article  PubMed  CAS  Google Scholar 

  31. Quigley H, Pease ME, Thibault D (1994) Change in the appearance of elastin in the lamina cribrosa of glaucomatous optic nerve heads Graefes Arch Clin Exp Ophthalmol 232:257–261

    Article  PubMed  CAS  Google Scholar 

  32. Sheldon WG, Warbritton AR, Bucci TJ, Turturro A (1995) Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice Lab Anim Sci 45:508–518

    PubMed  CAS  Google Scholar 

  33. Thale A, Tillmann B, Rochels R (1996) SEM studies of the collagen architecture of the human lamina cribrosa: normal and pathological findings Ophthalmologica 210:142–147

    Article  PubMed  CAS  Google Scholar 

  34. Williams RW, Strom RC, Rice DS, Goldowitz D (1996) Genetic and environmental control of variation in retinal ganglion cell number in mice J Neurosci 16:7193–7205

    PubMed  CAS  Google Scholar 

  35. Yucel YH, Kalichman MW, Mizisin AP, Powell HC, Weinreb RN (1999) Histomorphometric analysis of optic nerve changes in experimental glaucoma J Glaucoma 8:38–45

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by SFB 539 (BII.2) from the DFG and NEI EY 15109, EY 13467, EY 01867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Albrecht May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, C.A., Mittag, T. Optic nerve degeneration in the DBA/2NNia mouse: is the lamina cribrosa important in the development of glaucomatous optic neuropathy?. Acta Neuropathol 111, 158–167 (2006). https://doi.org/10.1007/s00401-005-0011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-0011-2

Keywords

Navigation