Skip to main content
Log in

Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

There is ample evidence for the involvement of oxidative stress in mitochondrial DNA damage and repair mechanisms in Parkinson’s disease (PD). The human MutY homolog (hMUTYH) which removes misincorporated adenine opposite 8-oxoG in DNA functions in post-replication, and is localized in the nuclei and mitochondria. We hypothesized that hMUTYH is involved in the disease process of PD. To test our hypothesis, we performed immunohistochemical and biochemical studies on brains of patients with PD and those of control patients. Our results showed up-regulation of hMUTYH in the mitochondria of the SN of PD patients. Western blot analysis also revealed high hMUTYH levels in PD patients and expression of a 47-kDa molecule in the brains as the major isoform. This molecule was localized within the mitochondria as confirmed by double staining with a mitochondrial marker. To confirm the presence of this molecule, we examined the mRNAs of isoforms that translate to the 47-kDa molecule. Based on the amount of mRNAs, the major molecule was α4. Interestingly, this molecule lacks the mitochondria targeting sequence. Our results suggest that hMUTYH might be a useful marker of oxidative stress and that oxidative stress and genomic instability are important in the PD disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    Article  PubMed  CAS  Google Scholar 

  2. Arai K, Morishita K, Shinmura K, Kohno T, Kim SR, Nohmi T, Taniwaki M, Ohwada S, Yokota J (1997) Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 14:2857–2861

    Article  PubMed  CAS  Google Scholar 

  3. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  PubMed  CAS  Google Scholar 

  4. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2:117–126

    Article  PubMed  CAS  Google Scholar 

  5. Cheadle JP, Sampson JR (2003) Exposing the MYtH about base excision repair and human inherited disease. Hum Mol Genet 12 Spec No 12:R159–165

    Article  CAS  Google Scholar 

  6. Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL (2000) Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem 275:37518–37523

    Article  PubMed  CAS  Google Scholar 

  7. Englander EW, Hu Z, Sharma A, Lee HM, Wu ZH, Greeley GH (2002) Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria. J Neurochem 83:1471–1480

    Article  PubMed  CAS  Google Scholar 

  8. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  9. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  10. Fukae J, Takanashi M, Kubo S, Nishioka K, Nakabeppu Y, Mori H, Mizuno Y, Hattori N (2005) Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson’s disease and related neurodegenerative disorders. Acta Neuropathol (Berl) 109:256–262

    Article  CAS  Google Scholar 

  11. Furuichi M, Yoshida MC, Oda H, Tajiri T, Nakabeppu Y, Tsuzuki T, Sekiguchi M (1994) Genomic structure and chromosome location of the human mutT homologue gene MTH1 encoding 8-oxo-dGTPase for prevention of A:T to C:G transversion. Genomics 24:485–490

    Article  PubMed  CAS  Google Scholar 

  12. Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396

    Article  PubMed  CAS  Google Scholar 

  13. Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 30:563–571

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi H, Tominaga Y, Hirano S, McKenna AE, Nakabeppu Y, Matsumoto Y (2002) Replication-associated repair of adenine:8-oxoguanine mispairs by MYH. Curr Biol 12:335–339

    Article  PubMed  CAS  Google Scholar 

  15. Kremer TM, Rinne ML, Xu Y, Chen XM, Kelley MR (2004) Protection of pulmonary epithelial cells from oxidative stress by hMYH adenine glycosylase. Respir Res 5:16

    Article  PubMed  CAS  Google Scholar 

  16. Lee HM, Hu Z, Ma H, Greeley GH Jr, Wang C, Englander EW (2004) Developmental changes in expression and subcellular localization of the DNA repair glycosylase, MYH, in the rat brain. J Neurochem 88:394–400

    Article  PubMed  CAS  Google Scholar 

  17. Maki H, Sekiguchi M (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355:273–275

    Article  PubMed  CAS  Google Scholar 

  18. Malaney S, Trumpower BL, Deber CM, Robinson BH (1997) The N terminus of the Qcr7 protein of the cytochrome bc1 complex is not essential for import into mitochondria in Saccharomyces cerevisiae but is essential for assembly of the complex. J Biol Chem 272:17495–17501

    Article  PubMed  CAS  Google Scholar 

  19. McGoldrick JP, Yeh YC, Solomon M, Essigmann JM, Lu AL (1995) Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol Cell Biol 15:989–996

    PubMed  CAS  Google Scholar 

  20. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616

    Article  PubMed  CAS  Google Scholar 

  21. Michaels ML, Cruz C, Grollman AP, Miller JH (1992) Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA 89:7022–7025

    Article  PubMed  CAS  Google Scholar 

  22. Michaels ML, Tchou J, Grollman AP, Miller JH (1992) A repair system for 8-oxo-7,8-dihydrodeoxyguanine. Biochemistry 31:10964–10968

    Article  PubMed  CAS  Google Scholar 

  23. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  PubMed  CAS  Google Scholar 

  24. Moriya M, Grollman AP (1993) Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C–>T:a transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet 239:72–76

    PubMed  CAS  Google Scholar 

  25. Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell 10:1637–1652

    PubMed  CAS  Google Scholar 

  26. Ohtsubo T, Nishioka K, Imaiso Y, Iwai S, Shimokawa H, Oda H, Fujiwara T, Nakabeppu Y (2000) Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res 28:1355–1364

    Article  PubMed  CAS  Google Scholar 

  27. Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL (2002) Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 277:44932–44937

    Article  PubMed  CAS  Google Scholar 

  28. Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  PubMed  CAS  Google Scholar 

  29. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet I:1269

    Article  Google Scholar 

  30. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  PubMed  CAS  Google Scholar 

  31. Shimura-Miura H, Hattori N, Kang D, Miyako K, Nakabeppu Y, Mizuno Y (1999) Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson’s disease. Ann Neurol 46:920–924

    Article  PubMed  CAS  Google Scholar 

  32. Slupska MM, Baikalov C, Luther WM, Chiang JH, Wei YF, Miller JH (1996) Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bacteriol 178:3885–3892

    PubMed  CAS  Google Scholar 

  33. Tajiri T, Maki H, Sekiguchi M (1995) Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res 336:257–267

    PubMed  CAS  Google Scholar 

  34. Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA 88:4690–4694

    Article  PubMed  CAS  Google Scholar 

  35. Xie Y, Yang H, Cunanan C, Okamoto K, Shibata D, Pan J, Barnes DE, Lindahl T, McIlhatton M, Fishel R, Miller JH (2004) Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res 64:3096–3102

    Article  PubMed  CAS  Google Scholar 

  36. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  PubMed  CAS  Google Scholar 

  37. Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, Iwai S, Nakabeppu Y (2003) An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem 278:37965–37973

    Article  PubMed  CAS  Google Scholar 

  38. Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, T., Fukae, J., Hatano, T. et al. Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson’s disease. Acta Neuropathol 112, 139–145 (2006). https://doi.org/10.1007/s00401-006-0081-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0081-9

Keywords

Navigation