Skip to main content

Advertisement

Log in

Notch1 and its ligand Jagged1 are present in remyelination in a T-cell- and antibody-mediated model of inflammatory demyelination

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The Notch receptor and its ligands are involved in myelination in central nervous system (CNS) development. Re-expression of this pathway in the adult CNS has been proposed to hamper remyelination in multiple sclerosis. Previous studies also revealed that pharmacological inhibition of Notch signaling ameliorates experimental autoimmune encephalomyelitis (EAE). However, in a recent study in toxin-induced demyelination constituents of the Notch signaling pathway were demonstrated in remyelinating lesions indicating that remyelination may occur in the presence of Notch signaling. We examined the expression of Notch1-immunoreactivity (IR) and Jagged1-IR in EAE induced by myelin-oligodendrocyte glycoprotein (MOG). In this model, the combined action of T cells, antibodies and the complement cascade yields a pathology closely reflecting multiple sclerosis. Notch1 and its ligand Jagged1 were differentially expressed in the lesions of MOG-EAE. Notch1-IR on macrophages was highest in actively demyelinating and lowest in remyelinating lesions. The amount of Notch1-positive astrocytes increased during the lesion evolution from demyelination to remyelination. Notch1-positive oligodendrocytes were exclusively present in remyelinating lesions and not found in lesions without signs of remyelination. Astrocytes represented the major source of Jagged1-IR in demyelination and remyelination. In conclusion, our study proves that constituents of the Notch pathway are expressed in remyelination in an animal model of T-cell- and antibody-mediated CNS demyelination. Thus, it is unlikely, at least in the paradigm of MOG-EAE, that Notch signaling is responsible for a failure of remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae S-K, Kittappa R, McKay RDG (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  CAS  PubMed  Google Scholar 

  2. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  3. Berezovska O, Xia MQ, Hyman BT (1998) Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J Neuropath Exp Neurol 57:738–795

    CAS  PubMed  Google Scholar 

  4. Boehmer HV (2005) Notch in lymphopoesis and T cell polarization. Nat Immunol 6:641–642

    Article  CAS  Google Scholar 

  5. Brück W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretzschmar HA, Lassmann H (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796

    Article  PubMed  Google Scholar 

  6. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD (2000) NG2-positive olidodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    CAS  PubMed  Google Scholar 

  7. Chang A, Tourtelotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    Article  PubMed  Google Scholar 

  8. Dallmann MJ, Smith E, Benson RA, Lamb JR (2005) Notch: control of lymphocyte differentiation in the periphery. Curr Opin Immunol 17:259–266

    Article  CAS  Google Scholar 

  9. Franklin RJM (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714

    Article  CAS  PubMed  Google Scholar 

  10. Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, Scherer SS, Suter U, Nave K-A, Mantei N (2002) Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 158:709–718

    Article  CAS  PubMed  Google Scholar 

  11. Givogri MI, Costa RM, Schonmann V, Silva AJ, Campagnoni AT, Bongarzone ER (2002) Central nervous system myelination in mice with deficient expression of notch1 receptor. J Neurosci Res 67:309–320

    Article  CAS  PubMed  Google Scholar 

  12. Jensen CH, Janho EJ, Santoni-Rugiu E, Holmskov U, Teisner B, Tygstrup N, Bisgaard HC (2004) Transit-amplifying ductal (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. Am J Pathol 164:1347–1359

    CAS  PubMed  Google Scholar 

  13. John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nature Med 8:1115–1121

    Article  CAS  PubMed  Google Scholar 

  14. Jurynczyk M, Jurewicz A, Bielecki B, Raine CS, Selmaj K (2005) Inhibition of Notch signaling enhances tissue repair in an animal model of multiple sclerosis. J Neuroimmunol 170:3–10

    Article  CAS  PubMed  Google Scholar 

  15. Kornek B, Storch MK, Weissert R, Wallstrom E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    CAS  PubMed  Google Scholar 

  16. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965–973

    Article  CAS  PubMed  Google Scholar 

  17. Lassmann H (2002) Mechanisms of demyelination and tissue destruction in multiple sclerosis. Clin Neurol Neurosurg 104:168–171

    Article  PubMed  Google Scholar 

  18. Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–454

    CAS  PubMed  Google Scholar 

  19. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (1999) A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 122:2279–2295

    Article  PubMed  Google Scholar 

  20. Maeda Y, Solanky M, Menonna J, Chapin J, Li W, Dowling P (2001) Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann Neurol 49:776–785

    Article  CAS  PubMed  Google Scholar 

  21. Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V, Baki L, Wen P, Efthimiopoulos S, Shao Z, Wisniewski T, Robakis NK (2002) A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 21:1948–1956

    Article  CAS  PubMed  Google Scholar 

  22. Marambaud P, Wen PH, Dutt A, Shioi J, Takashima A, Siman R, Robakis NK (2003) A CBP binding transcriptional repressor produced by the PS1/epsilon cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114:635–645

    Article  CAS  PubMed  Google Scholar 

  23. Mastronardi FG, Min W, Wang H, Winer S, Dosch M, Boggs JM, Moscarello MA (2004) Attenuation of experimental autoimmune encephalomyelitis and nonimmune demyelination by IFN-β plus vitamin B12: treatment to modify Notch-1/Sonic hedgehog balance. J Immunol 172:6418–6426

    CAS  PubMed  Google Scholar 

  24. May P, Reddy YK, Herz J (2002) Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J Biol Chem 277:18736–18743

    Article  CAS  PubMed  Google Scholar 

  25. Milner LA, Bigas A (1999) Notch as a mediator of cell fate determination in hematopoesis: evidence and speculation. Blood 93:2431

    CAS  PubMed  Google Scholar 

  26. Minter LM, Turley DM, Das P, Shin HM, Joshi I, Lawlor RG, Cho OH, Palaga T, Gottipati S, Telfer JC, Kostura L, Fauq AH, Simpson K, Such KA, Miele L, Golde TE, Miller SD, Osborne BA (2005) Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6:680–688

    Article  CAS  PubMed  Google Scholar 

  27. Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228:151–165

    Article  CAS  PubMed  Google Scholar 

  28. Ni C-Y, Murphy MP, Golde TE, Carpenter G (2001) Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294:2179–2181

    Article  CAS  PubMed  Google Scholar 

  29. Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong AJ, Saya H (2001) Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol 155:755–762

    Article  CAS  PubMed  Google Scholar 

  30. Piddlesden S, Storch MK, Hibbs M, Freeman AM, Morgan BP (1994) Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J Immunol 152:5477–5484

    CAS  PubMed  Google Scholar 

  31. Scolding N, Franklin RJM, Stevens S, Heldin CH, Compston A, Newcombe J (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121:2221–2228

    Article  PubMed  Google Scholar 

  32. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H (1999) Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274:32961–32969

    Article  CAS  PubMed  Google Scholar 

  33. Stidworthy MF, Genoud S, Li W-W, Leone DP, Mantei N, Suter U, Franklin RJM (2004) Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 127:1928–1941

    Article  PubMed  Google Scholar 

  34. Storch MK, Piddlesden S, Haltia M, Iivanainen M, Morgan P, Lassmann H (1998) Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann Neurol 43:465–471

    Article  CAS  PubMed  Google Scholar 

  35. Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M, Olsson T, Linington C, Lassmann H (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the sprectrum of multiple sclerosis pathology. Brain Pathol 8:681–694

    Article  CAS  PubMed  Google Scholar 

  36. Stump G, Durrer A, Klein A-L, Lütolf S, Suter U, Taylor V (2002) Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mechan Devel 114:153–159

    Article  CAS  Google Scholar 

  37. Vass K, Lassmann H, Wekerle H, Wisniewski HM (1986) The distribution of Ia antigen in the lesions of rat experimental allergic encephalomyelitis. Acta Neuropathol (Berl) 70:149–160

    Article  CAS  Google Scholar 

  38. Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75

    Article  PubMed  Google Scholar 

  39. Weinmaster G (1997) The ins and outs of Notch signaling. Mol Cell Neurosci 9:91–102

    Article  CAS  PubMed  Google Scholar 

  40. Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H, Linington C, Olsson T (1998) MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102:1265–1273

    Article  CAS  PubMed  Google Scholar 

  41. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609

    CAS  PubMed  Google Scholar 

  42. Yan B, Raben N, Plotz P (2002) The human acid alpha-glucosidase gene is a novel target of the Notch-1/Hes-1 signaling pathway. J Biol Chem 277:29760–29764

    Article  CAS  PubMed  Google Scholar 

  43. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Hans Lassmann for helpful discussion and Marianne Leisser, Helene Breitschopf and Elisabeth Sommitsch for their expertise in techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria K. Storch.

Additional information

M. K. S. receives grant support from Biogen Idec; R. W. holds a Heisenberg fellowship of Deutsche Forschungsgemeinschaft (DFG We 1947/4-2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, T., Bauer, J., Weissert, R. et al. Notch1 and its ligand Jagged1 are present in remyelination in a T-cell- and antibody-mediated model of inflammatory demyelination . Acta Neuropathol 113, 195–203 (2007). https://doi.org/10.1007/s00401-006-0170-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0170-9

Keywords

Navigation