Skip to main content

Advertisement

Log in

Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Ependymomas are primary tumors of the central nervous system that typically originate from the walls of the cerebral ventricles or from the spinal canal. The pathogenesis of these tumors is poorly understood, and prognostic assessment based on histologic features and clinical parameters is difficult. The aim of this study was to investigate the molecular heterogeneity of ependymomas. We used cDNA microarrays and RT-PCR to examine gene expression in 47 ependymomas. We present results for five comparisons: (1) tumors from children and adults with poor versus favorable outcome, (2) tumors from children with poor versus favorable outcome, (3) tumors with high versus low proliferation indices, (4) subependymomas versus myxopapillary ependymomas, and (5) spinal versus intracranial ependymomas. For patients with an overall survival >10 years after diagnosis, we identified 27 genes associated with favorable prognosis. In contrast, overexpression of BNIP3, MRC1, EPHB3, GLIS3, CDK4, COL4A2, EBP, NRCAM, and CCNA1 genes in tumors with high proliferation indices was associated with a poor outcome. Thirty genes, including ETV6, YWHAE, TOP2A, TLR2, IRAK1, TIA1, and UFD1L were found to be highly expressed in subependymomas but not myxopapillary ependymomas. Also, 30 genes were differentially expressed in spinal versus intracranial ependymomas. There was no relationship between expression profiles and tumor grade, patient age, and patient gender. Our results provide insight into specific molecular events underlying ependymoma tumorigenesis and may contribute to more accurate diagnosis and prediction of clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso ME, Bello MJ, Arjona D, Gonzalez-Gomez P, Lomas J, de Campos JM, Kusak ME, Isla A, Rey JA (2002) Analysis of the NF2 gene in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet 134:1–5

    Article  PubMed  CAS  Google Scholar 

  2. Alterman RL, Stanley ER (1994) Colony stimulating factor-1 expression in human glioma. Mol Chem Neuropathol 21:177–188

    Article  PubMed  CAS  Google Scholar 

  3. Ammerlaan AC, de Bustos C, Ararou A, Buckley PG, Mantripragada KK, Verstegen MJ, Hulsebos TJ, Dumanski JP (2005) Localization of a putative low-penetrance ependymoma susceptibility locus to 22q11 using a chromosome 22 tiling-path genomic microarray. Genes Chromosomes Cancer 43:329–338

    Article  PubMed  CAS  Google Scholar 

  4. Andersson A, Olofsson T, Lindgren D, Nilsson B, Ritz C, Eden P, Lassen C, Rade J, Fontes M, Morse H, Heldrup J, Behrendtz M, Mitelman F, Hoglund M, Johansson B, Fioretos T (2005) Molecular signatures in childhood acute leukemia and their correlations to expression patterns in normal hematopoietic subpopulations. Proc Natl Acad Sci USA 102:19069–19074

    Article  PubMed  CAS  Google Scholar 

  5. Carter M, Nicholson J, Ross F, Crolla J, Allibone R, Balaji V, Perry R, Walker D, Gilbertson R, Ellison DW (2002) Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. Br J Cancer 86:929–939

    Article  PubMed  CAS  Google Scholar 

  6. Collins VP (1995) Gene amplification in human gliomas. Glia 15:289–296

    Article  PubMed  CAS  Google Scholar 

  7. Doege H, Bocianski A, Scheepers A, Axer H, Eckel J, Joost HG, Schurmann A (2001) Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. Biochem J 359:443–449

    Article  PubMed  CAS  Google Scholar 

  8. Dyer S, Prebble E, Davison V, Davies P, Ramani P, Ellison D, Grundy R (2002) Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161:2133–2141

    PubMed  CAS  Google Scholar 

  9. Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632

    PubMed  CAS  Google Scholar 

  10. Figarella-Branger D, Civatte M, Bouvier-Labit C, Gouvernet J, Gambarelli D, Gentet JC, Lena G, Choux M, Pellissier JF (2000) Prognostic factors in intracranial ependymomas in children. J Neurosurg 93:605–613

    Article  PubMed  CAS  Google Scholar 

  11. Goldberg JL, Vargas ME, Wang JT, Mandemakers W, Oster SF, Sretavan DW, Barres BA (2004) An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J Neurosci 24:4989–4999

    Article  PubMed  CAS  Google Scholar 

  12. Grunblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:1543–1573

    Article  PubMed  CAS  Google Scholar 

  13. Hinek A, Jung S, Rutka JT (1999) Cell surface aggregation of elastin receptor molecules caused by suramin amplified signals leading to proliferation of human glioma cells. Acta Neuropathol 97:399–407

    Article  PubMed  CAS  Google Scholar 

  14. Hirose Y, Aldape K, Bollen A, James CD, Brat D, Lamborn K, Berger M, Feuerstein BG (2001) Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 158:1137–1143

    PubMed  CAS  Google Scholar 

  15. Ho DM, Hsu CY, Wong TT, Chiang H (2001) A clinicopathologic study of 81 patients with ependymomas and proposal of diagnostic criteria for anaplastic ependymoma. J Neurooncol 54:77–85

    Article  PubMed  CAS  Google Scholar 

  16. Homma J, Yamanaka R, Yajima N, Tsuchiya N, Genkai N, Sano M, Tanaka R (2006) Increased expression of CCAAT/enhancer binding protein beta correlates with prognosis in glioma patients. Oncol Rep 15:595–601

    PubMed  CAS  Google Scholar 

  17. Huang B, Starostik P, Kuhl J, Tonn JC, Roggendorf W (2002) Loss of heterozygosity on chromosome 22 in human ependymomas. Acta Neuropathol 103:415–420

    Article  PubMed  CAS  Google Scholar 

  18. Huang B, Starostik P, Schraut H, Krauss J, Sorensen N, Roggendorf W (2003) Human ependymomas reveal frequent deletions on chromosomes 6 and 9. Acta Neuropathol 106:357–362

    Article  PubMed  CAS  Google Scholar 

  19. Huang H, Held-Feindt J, Buhl R, Mehdorn HM, Mentlein R (2005) Expression of VEGF and its receptors in different brain tumors. Neurol Res 27:371–377

    Article  PubMed  CAS  Google Scholar 

  20. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):96–104

    Google Scholar 

  21. Jaing TH, Wang HS, Tsay PK, Tseng CK, Jung SM, Lin KL, Lui TN (2004) Multivariate analysis of clinical prognostic factors in children with intracranial ependymomas. J Neurooncol 68:255–261

    Article  PubMed  Google Scholar 

  22. Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24:980–991

    Article  PubMed  CAS  Google Scholar 

  23. Konishi H, Nakagawa T, Harano T, Mizuno K, Saito H, Masuda A, Matsuda H, Osada H, Takahashi T (2002) Identification of frequent G(2) checkpoint impairment and a homozygous deletion of 14–3–3epsilon at 17p13.3 in small cell lung cancers. Cancer Res 62:271–276

    PubMed  CAS  Google Scholar 

  24. Korshunov A, Golanov A, Sycheva R, Timirgaz V (2004) The histologic grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era: an analysis of 258 patients. Cancer 100:1230–1237

    Article  PubMed  Google Scholar 

  25. Korshunov A, Neben K, Wrobel G, Tews B, Benner A, Hahn M, Golanov A, Lichter P (2003) Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163:1721–1727

    PubMed  CAS  Google Scholar 

  26. Kurt E, Zheng PP, Hop WC, van der Weiden M, Bol M, van den Bent MJ, Avezaat CJ, Kros JM (2006) Identification of relevant prognostic histopathologic features in 69 intracranial ependymomas, excluding myxopapillary ependymomas and subependymomas. Cancer 106:388–395

    Article  PubMed  Google Scholar 

  27. Lannon CL, Sorensen PH (2005) ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. Semin Cancer Biol 15:215–223

    Article  PubMed  CAS  Google Scholar 

  28. Lin SY, Li K, Stewart GS, Elledge SJ (2004) Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci USA 101:6484–6489

    Article  PubMed  CAS  Google Scholar 

  29. Monoranu CM, Kochs D, Huang B, Loukachova-v.Zangen I, Roggendorf W (2004) Ependymomas in adults: LOH analysis, MIB1 labeling and EMA expression and correlation with clinical data. Acta Neuropathol 108:356

    Google Scholar 

  30. Naidoo V, Naidoo S, Mahabeer R, Raidoo DM (2005) Localization of the endothelin system in human diffuse astrocytomas. Cancer 104:1049–1057

    Article  PubMed  CAS  Google Scholar 

  31. Oster SF, Bodeker MO, He F, Sretavan DW (2003) Invariant Sema5A inhibition serves an ensheathing function during optic nerve development. Development 130:775–784

    Article  PubMed  CAS  Google Scholar 

  32. Ragazzini P, Gamberi G, Pazzaglia L, Serra M, Magagnoli G, Ponticelli F, Ferrari C, Ghinelli C, Alberghini M, Bertoni F, Picci P, Benassi MS (2004) Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histol Histopathol 19:401–411

    PubMed  CAS  Google Scholar 

  33. Rajaram V, Gutmann DH, Prasad SK, Mansur DB, Perry A (2005) Alterations of protein 4.1 family members in ependymomas: a study of 84 cases. Mod Pathol 18:991–997

    Article  PubMed  CAS  Google Scholar 

  34. Reardon DA, Entrekin RE, Sublett J, Ragsdale S, Li H, Boyett J, Kepner JL, Look AT (1999) Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer 24:230–237

    Article  PubMed  CAS  Google Scholar 

  35. Reni M, Brandes AA, Vavassori V, Cavallo G, Casagrande F, Vastola F, Magli A, Franzin A, Basso U, Villa E (2004) A multicenter study of the prognosis and treatment of adult brain ependymal tumors. Cancer 100:1221–1229

    Article  PubMed  Google Scholar 

  36. Rickert CH (2004) Prognosis-related molecular markers in pediatric central nervous system tumors. J Neuropathol Exp Neurol 63:1211–1224

    PubMed  CAS  Google Scholar 

  37. Schiffer D, Giordana MT (1998) Prognosis of ependymoma. Childs Nerv Syst 14:357–361

    Article  PubMed  CAS  Google Scholar 

  38. Sehgal A, Boynton AL, Young RF, Vermeulen SS, Yonemura KS, Kohler EP, Aldape HC, Simrell CR, Murphy GP (1998) Cell adhesion molecule Nr-CAM is over-expressed in human brain tumors. Int J Cancer 76:451–458

    Article  PubMed  CAS  Google Scholar 

  39. Sehgal A, Ricks S, Warrick J, Boynton AL, Murphy GP (1999) Antisense human neuroglia related cell adhesion molecule hNr-CAM, reduces the tumorigenic properties of human glioblastoma cells. Anticancer Res 19:4947–4953

    PubMed  CAS  Google Scholar 

  40. Shuangshoti S, Rushing EJ, Mena H, Olsen C, Sandberg GD (2005) Supratentorial extraventricular ependymal neoplasms: a clinicopathologic study of 32 patients. Cancer 103:2598–2605

    Article  PubMed  Google Scholar 

  41. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R (ed) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  42. Smyth GK, Yang YH, Speed T (2003) Statistical issues in cDNA microarray data analysis, Methods Mol Biol 224:111–136

    PubMed  CAS  Google Scholar 

  43. Stettner G, Klein R, Roggendorf W (1999) HLA-DR expression in microglia and tumor cells of childhood ependymomas: an immunhistochemical study. Acta Neuropathol 98:552

    Google Scholar 

  44. Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, Thompson D, Darling JL, Thomas DG, Warr TJ (2005) Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro-oncol 7:20–31

    Article  PubMed  CAS  Google Scholar 

  45. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  46. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 99:6567–6572

    Article  PubMed  CAS  Google Scholar 

  47. Timmermann B, Kortmann RD, Kuhl J, Meisner C, Slavc I, Pietsch T, Bamberg M (2000) Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int J Radiat Oncol Biol Phys 46:287–295

    Article  PubMed  CAS  Google Scholar 

  48. Timmermann B, Kortmann RD, Kuhl J, Rutkowski S, Dieckmann K, Meisner C, Bamberg M (2005) Role of radiotherapy in anaplastic ependymoma in children under age of 3 years: results of the prospective German brain tumor trials HIT-SKK 87 and 92. Radiother Oncol 77:278–285

    Article  PubMed  Google Scholar 

  49. van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, Sommer C, Reifenberger G, Hanash SM (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163:1033–1043

    PubMed  Google Scholar 

  50. Velazquez-Fernandez D, Laurell C, Geli J, Hoog A, Odeberg J, Kjellman M, Lundeberg J, Hamberger B, Nilsson P, Backdahl M (2005) Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 138:1087–1094

    Article  PubMed  Google Scholar 

  51. Verstegen MJ, Leenstra DT, Ijlst-Keizers H, Bosch DA (2002) Proliferation- and apoptosis-related proteins in intracranial ependymomas: an immunohistochemical analysis. J Neurooncol 56:21–28

    Article  PubMed  CAS  Google Scholar 

  52. Wiestler OD, Schiffer D, Coons SW, Prayson RA, Rosenblum MK (2000) Ependymoma. In: Kleihues P (ed) Pathology and genetics of tumors the nervous system. IARC Press, Lyon, pp 71–82

    Google Scholar 

  53. Wolfsberger S, Fischer I, Hoftberger R, Birner P, Slavc I, Dieckmann K, Czech T, Budka H, Hainfellner J (2004) Ki-67 immunolabeling index is an accurate predictor of outcome in patients with intracranial ependymoma. Am J Surg Pathol 28:914–920

    Article  PubMed  Google Scholar 

  54. Yu J, Zhang H, Gu J, Lin S, Li J, Lu W, Wang Y, Zhu J (2004) Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 4:65

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by a grant from the Sander Foundation (no. 99.070.2). We thank Hannelore Schraut and Margarete Göbel for excellent technical assistance and Miryame Hofmann for her assistance in performing the RT-PCR. We thank Dr. Vladimir V. Lukashov, and Dr. Andreas Rosenwald for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Roggendorf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2006_190_MOESM1_ESM.xls

401_2006_190_MOESM2_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukashova-v.Zangen, I., Kneitz, S., Monoranu, CM. et al. Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol 113, 325–337 (2007). https://doi.org/10.1007/s00401-006-0190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0190-5

Keywords

Navigation