Skip to main content

Advertisement

Log in

Animal models of Parkinson’s disease progression

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder whose etiology is not understood. This disease occurs both sporadically and through inheritance of single genes, although the familial types are rare. Over the past decade or so, experimental and clinical data suggest that PD could be a multifactorial, neurodegenerative disease that involves strong interactions between the environment and genetic predisposition. Our understanding of the pathophysiology and motor deficits of the disease relies heavily on fundamental research on animal models and the last few years have seen an explosion of toxin-, inflammation-induced and genetically manipulated models. The insight gained from the use of such models has strongly advanced our understanding of the progression and stages of the disease. The models have also aided the development of novel therapies to improve symptomatic management, and they are critical for the development of neuroprotective strategies. This review critically evaluates these in vivo models and the roles they play in mimicking the progression of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarsland D, Ballard CG, Halliday G (2004) Are Parkinson’s disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol 17:137–145

    PubMed  Google Scholar 

  2. Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136:317–324

    PubMed  CAS  Google Scholar 

  3. Ascherio A, Chen H, Weisskopf MG, O’Reilly E, McCullough ML, Calle EE, Schwarzschild MA, Thun MJ (2006) Pesticide exposure and risk for Parkinson’s disease. Ann Neurol 60:197–203

    PubMed  CAS  Google Scholar 

  4. Barron KD (1995) The microglial cell. A historical review. J Neurol Sci 134(Suppl 1):57–68

    PubMed  Google Scholar 

  5. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    PubMed  CAS  Google Scholar 

  6. Bezard E, Dovero S, Bioulac B, Gross CE (1997) Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neurosci Lett 234:47–50

    PubMed  CAS  Google Scholar 

  7. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    PubMed  CAS  Google Scholar 

  8. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    PubMed  CAS  Google Scholar 

  9. Braak H, Braak E, Yilmazer D, Schultz C, de Vos RA, Jansen EN (1995) Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm Suppl 46:15–31

    PubMed  CAS  Google Scholar 

  10. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  11. Breese GR, Traylor TD (1971) Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Br J Pharmacol 42:88–99

    PubMed  CAS  Google Scholar 

  12. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1–10

    PubMed  CAS  Google Scholar 

  13. Castano A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  PubMed  CAS  Google Scholar 

  14. Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574–579

    PubMed  CAS  Google Scholar 

  15. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    PubMed  CAS  Google Scholar 

  16. Chan P, Di Monte DA, Langston JW, Janson AM (1997) (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice. J Pharmacol Exp Ther 280:439–446

    PubMed  CAS  Google Scholar 

  17. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383–396

    PubMed  CAS  Google Scholar 

  18. Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657–663

    PubMed  CAS  Google Scholar 

  19. Chesselet MF (2007) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol doi:10.1016/j.expneurol.2007.08.006

  20. Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE (2005) Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis 20:360–371

    PubMed  CAS  Google Scholar 

  21. Cocheme HM, Murphy MP (2007) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem doi:10.1074/jbc.M708597200

  22. Dauer W, Przedborski S (2003) Parkinson’s disease: Mechanisms and models. Neuron 39:889–909

    PubMed  CAS  Google Scholar 

  23. Dawson TM, Dawson VL (2002) Neuroprotective and neurorestorative strategies for Parkinson’s disease. Nat Neurosci 5:1058–1061

    PubMed  CAS  Google Scholar 

  24. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    PubMed  CAS  Google Scholar 

  25. Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Counsell C, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Soderkvist P, Felice A (2007) Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med 64:666–672

    PubMed  CAS  Google Scholar 

  26. Dobrenis K (1998) Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 16:320–344

    PubMed  CAS  Google Scholar 

  27. Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17:331–317

    PubMed  CAS  Google Scholar 

  28. Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:14669–14674

    PubMed  CAS  Google Scholar 

  29. Fernagut PO, Hutson CB, Fleming SM, Tetreaut NA, Salcedo J, Masliah E, Chesselet MF (2007) Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 61:991–1001

    PubMed  CAS  Google Scholar 

  30. Fleming SM, Delville Y, Schallert T (2005) An intermittent, controlled-rate, slow progressive degeneration model of Parkinson’s disease: antiparkinson effects of Sinemet and protective effects of methylphenidate. Behav Brain Res 156:201–2213

    PubMed  CAS  Google Scholar 

  31. Fleming SM, Fernagut PO, Chesselet MF (2005) Genetic mouse models of parkinsonism: strengths and limitations. NeuroRx 2:495–503

    PubMed  Google Scholar 

  32. Fleming SM, Jordan MD, Masliah E, Chesselet MF, Roos KP (2007) Alterations in baroreceptor function in transgenic mice overexpressing human alpha synuclein. Neurosci Abst 33:50–59

    Google Scholar 

  33. Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24:9434–9440

    PubMed  CAS  Google Scholar 

  34. Fleming SM, Salcedo J, Hutson CB, Rockenstein E, Masliah E, Levine MS, Chesselet MF (200) Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype alpha-synuclein. Neuroscience 142:1245–1253

    Google Scholar 

  35. Fleming SM, Tetreaut NA, Masliah E, Chesselet MF (2006) Alterations in olfactory function in transgenic mice overexpressing human wildtype alpha-synuclein. Neurosci Abst 32:75–79

    Google Scholar 

  36. Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL, Chesselet MF (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187:418–429

    PubMed  CAS  Google Scholar 

  37. Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102:3413–3418

    PubMed  CAS  Google Scholar 

  38. Fornai F, Vaglini F, Maggio R, Bonuccelli U, Corsini GU (1997) Species differences in the role of excitatory amino acids in experimental parkinsonism. Neurosci Biobehav Rev 21:401–415

    PubMed  CAS  Google Scholar 

  39. Fuchs J, Mueller JC, Lichtner P, Schulte C, Munz M, Berg D, Wullner U, Illig T, Sharma M, Gasser T (2007) The transcription factor PITX3 is associated with sporadic Parkinson’s disease. Neurobiol Aging doi:10.1016/j.neurobiolaging.2007.08.014

  40. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F (2002) A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 51:296–301

    PubMed  CAS  Google Scholar 

  41. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    PubMed  CAS  Google Scholar 

  42. Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23:6181–6187

    PubMed  CAS  Google Scholar 

  43. Gispert S, Del Turco D, Garrett L, Chen A, Bernard DJ, Hamm-Clement J, Korf HW, Deller T, Braak H, Auburger G, Nussbaum RL (2003) Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 24:419–429

    PubMed  CAS  Google Scholar 

  44. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    PubMed  CAS  Google Scholar 

  45. Grant RJ, Clarke PB (2002) Susceptibility of ascending dopamine projections to 6-hydroxydopamine in rats: effect of hypothermia. Neuroscience 115:1281–1294

    PubMed  CAS  Google Scholar 

  46. Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122

    PubMed  CAS  Google Scholar 

  47. Halliday GM, Del Tredici K, Braak H (2006) Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. J Neural Transm Suppl:99–103

  48. Hallman H, Lange J, Olson L, Stromberg I, Jonsson G (1985) Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurones in the mouse. J Neurochem 44:117–127

    PubMed  CAS  Google Scholar 

  49. Harding AJ, Halliday GM (2001) Cortical Lewy body pathology in the diagnosis of dementia. Acta Neuropathol 102:355–363

    PubMed  CAS  Google Scholar 

  50. Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A (2006) Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 60:389–398

    PubMed  CAS  Google Scholar 

  51. Hashimoto M, Rockenstein E, Masliah E (2003) Transgenic models of alpha-synuclein pathology: past, present, and future. Ann NY Acad Sci 991:171–188

    Article  PubMed  CAS  Google Scholar 

  52. Herrera AJ, Castano A, Venero JL, Cano J, Machado A (2000) The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7:429–447

    PubMed  CAS  Google Scholar 

  53. Hoglinger GU, Feger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M, Oertel WH, Hirsch EC (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502

    PubMed  CAS  Google Scholar 

  54. Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, Agid Y, Dugas B, Hirsch EC (1999) FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 19:3440–3447

    PubMed  CAS  Google Scholar 

  55. Hwang DY, Fleming SM, Ardayfio P, Moran-Gates T, Kim H, Tarazi FI, Chesselet MF, Kim KS (2005) 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci 25:2132–2137

    PubMed  CAS  Google Scholar 

  56. Iravani MM, Leung CC, Sadeghian M, Haddon CO, Rose S, Jenner P (2005) The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci 22:317–330

    PubMed  Google Scholar 

  57. Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia de Yebenes J (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–22791

    PubMed  CAS  Google Scholar 

  58. Javoy F, Sotelo C, Herbet A, Agid Y (1976) Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 102:201–215

    PubMed  CAS  Google Scholar 

  59. Jeon BS, Jackson-Lewis V, Burke RE (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4:131–137

    PubMed  CAS  Google Scholar 

  60. Johnston RE, Schallert T, Becker JB (1999) Akinesia and postural abnormality after unilateral dopamine depletion. Behav Brain Res 104:189–196

    CAS  Google Scholar 

  61. Jonsson G (1980) Chemical neurotoxins as denervation tools in neurobiology. Annu Rev Neurosci 3:169–187

    PubMed  CAS  Google Scholar 

  62. Joyce JN, Woolsey C, Ryoo H, Borwege S, Hagner D (2004) Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson’s disease, and downregulates the dopamine transporter via the D3 receptor. BMC Biol 2:22 doi:10.1186/1741-7007-2-22

    PubMed  Google Scholar 

  63. Karunakaran S, Diwakar L, Saeed U, Agarwal V, Ramakrishnan S, Iyengar S, Ravindranath V (2007) Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson’s disease: protection by alpha-lipoic acid. Faseb J 21:2226–2236

    PubMed  CAS  Google Scholar 

  64. Kennedy JL, Farrer LA, Andreasen NC, Mayeux R, St George-Hyslop P (2003) The genetics of adult-onset neuropsychiatric disease: complexities and conundra? Science 302:822–826

    PubMed  CAS  Google Scholar 

  65. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    PubMed  CAS  Google Scholar 

  66. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    PubMed  CAS  Google Scholar 

  67. Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446

    PubMed  CAS  Google Scholar 

  68. Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang AE (2007) Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol 6:652–662

    PubMed  CAS  Google Scholar 

  69. Kuter K, Smialowska M, Wieronska J, Zieba B, Wardas J, Pietraszek M, Nowak P, Biedka I, Roczniak W, Konieczny J, Wolfarth S, Ossowska K (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res 1155:196–207

    PubMed  CAS  Google Scholar 

  70. Lane E, Dunnett S (2007) Animal models of Parkinson’s disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl) doi:10.1007/s00213-007-0931-8

  71. Lane EL, Cheetham SC, Jenner P (2006) Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson’s disease? Exp Neurol 197:284–290

    PubMed  CAS  Google Scholar 

  72. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    PubMed  CAS  Google Scholar 

  73. Lau YS, Trobough KL, Crampton JM, Wilson JA (1990) Effects of probenecid on striatal dopamine depletion in acute and long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Gen Pharmacol 21:181–187

    PubMed  CAS  Google Scholar 

  74. Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38

    PubMed  CAS  Google Scholar 

  75. Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L, Dawson TM, Jakala P, Hartmann T, Price DL, Lee MK (2005) Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc Natl Acad Sci USA 102:2162–2167

    PubMed  CAS  Google Scholar 

  76. Ling Z, Chang QA, Tong CW, Leurgans SE, Lipton JW, Carvey PM (2004) Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally. Exp Neurol 190:373–383

    PubMed  CAS  Google Scholar 

  77. Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW, Hong JS, Carvey PM (2002) In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 17:116–124

    PubMed  Google Scholar 

  78. Ling Z, Zhu Y, Tong C, Snyder JA, Lipton JW, Carvey PM (2006) Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp Neurol 199:499–512

    PubMed  CAS  Google Scholar 

  79. Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742–1751

    PubMed  CAS  Google Scholar 

  80. Liu B (2006) Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease. Aaps J 8:E606–E621

    PubMed  Google Scholar 

  81. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99:10813–10818

    PubMed  CAS  Google Scholar 

  82. Lu X, Fleming SM, Chesselet MF, Yang WX (2006) A novel BAC transgenic mouse model of PD overexpressing human mutant parkin in dopaminergic neurons. Neurosci Abst 32:612.3

    Google Scholar 

  83. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277:1641–1644

    PubMed  CAS  Google Scholar 

  84. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269

    PubMed  CAS  Google Scholar 

  85. McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10:119–127

    PubMed  CAS  Google Scholar 

  86. McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604

    PubMed  CAS  Google Scholar 

  87. McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89

    PubMed  CAS  Google Scholar 

  88. Meredith GE, Halliday GM, Totterdell S (2004) A critical review of the development and importance of proteinaceous aggregates in animal models of Parkinson’s disease: new insights into Lewy body formation. Parkinsonism Relat Disord 10:191–202

    PubMed  Google Scholar 

  89. Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 21:1595–1606

    PubMed  Google Scholar 

  90. Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, Lau YS (2002) Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956:156–165

    PubMed  CAS  Google Scholar 

  91. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100:4245–4250

    PubMed  CAS  Google Scholar 

  92. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    PubMed  CAS  Google Scholar 

  93. Peng J, Stevenson FF, Doctrow SR, Andersen JK (2005) Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantia nigra: implications for Parkinson disease. J Biol Chem 280:29194–29198

    PubMed  CAS  Google Scholar 

  94. Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 102:2174–2179

    PubMed  CAS  Google Scholar 

  95. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    PubMed  CAS  Google Scholar 

  96. Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7:685–693

    PubMed  CAS  Google Scholar 

  97. Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67:631–647

    PubMed  CAS  Google Scholar 

  98. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    PubMed  Google Scholar 

  99. Reavill C, Jenner P, Marsden CD (1983) Differentiation of dopamine agonists using drug-induced rotation in rats with unilateral or bilateral 6-hydroxydopamine destruction of ascending dopamine pathways. Biochem Pharmacol 32:865–870

    PubMed  CAS  Google Scholar 

  100. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68:568–578

    PubMed  CAS  Google Scholar 

  101. Rousselet E, Joubert C, Callebert J, Parain K, Tremblay L, Orieux G, Launay JM, Cohen-Salmon C, Hirsch EC (2003) Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 14:218–228

    PubMed  CAS  Google Scholar 

  102. Saint-Pierre M, Tremblay ME, Sik A, Gross RE, Cicchetti F (2006) Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats. J Neurochem 98:760–772

    PubMed  CAS  Google Scholar 

  103. Saner A, Thoenen H (1971) Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol Pharmacol 7:147–154

    PubMed  CAS  Google Scholar 

  104. Sang TK, Chang HY, Lawless GM, Ratnaparkhi A, Mee L, Ackerson LC, Maidment NT, Krantz DE, Jackson GR (2007) A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci 27:981–992

    PubMed  CAS  Google Scholar 

  105. Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415

    PubMed  CAS  Google Scholar 

  106. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    PubMed  CAS  Google Scholar 

  107. Schapira AH (1993) Mitochondrial complex I deficiency in Parkinson’s disease. Adv Neurol 60:288–291

    PubMed  CAS  Google Scholar 

  108. Sedelis M, Hofele KI, Auburger GW, Morgan S, Huston JP, Schwarting RK (2000) MPTP susceptibility in the mouse: behavioral, neurochemical and histological analysis of gender and strain differences. Behav Genet 30:171–182

    PubMed  CAS  Google Scholar 

  109. Sgado P, Alberi L, Gherbassi D, Galasso SL, Ramakers GM, Alavian KN, Smidt MP, Dyck RH, Simon HH (2006) Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci USA 103:15242–15247

    PubMed  CAS  Google Scholar 

  110. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16

    PubMed  CAS  Google Scholar 

  111. Smidt MP, Smits SM, Bouwmeester H, Hamers FP, van der Linden AJ, Hellemons AJ, Graw J, Burbach JP (2004) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131:1145–1155

    PubMed  CAS  Google Scholar 

  112. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9:1231–1233

    PubMed  CAS  Google Scholar 

  113. Sonnier L, Le Pen G, Hartmann A, Bizot JC, Trovero F, Krebs MO, Prochiantz A (2007) Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 27:1063–1071

    PubMed  CAS  Google Scholar 

  114. Sonsalla PK, Heikkila RE (1986) The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol 129:339–345

    PubMed  CAS  Google Scholar 

  115. Stanic D, Finkelstein DI, Bourke DW, Drago J, Horne MK (2003) Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat. Eur J Neurosci 18:1175–1188

    PubMed  CAS  Google Scholar 

  116. Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30:244–250

    PubMed  CAS  Google Scholar 

  117. Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA, Cory-Slechta DA (2003) Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson’s disease phenotype. Eur J Neurosci 18:589–600

    PubMed  Google Scholar 

  118. Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20:9207–9214

    PubMed  CAS  Google Scholar 

  119. Thiruchelvam MJ, Powers JM, Cory-Slechta DA, Richfield EK (2004) Risk factors for dopaminergic neuron loss in human alpha-synuclein transgenic mice. Eur J Neurosci 19:845–854

    PubMed  CAS  Google Scholar 

  120. Tofaris GK, Garcia Reitbock P, Humby T, Lambourne SL, O’Connell M, Ghetti B, Gossage H, Emson PC, Wilkinson LS, Goedert M, Spillantini MG (2006) Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1–120): implications for Lewy body disorders. J Neurosci 26:3942–3950

    PubMed  CAS  Google Scholar 

  121. Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr (2000) Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 162:37–50

    PubMed  CAS  Google Scholar 

  122. Truong L, Allbutt H, Kassiou M, Henderson JM (2006) Developing a preclinical model of Parkinson’s disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 169:1–9

    PubMed  CAS  Google Scholar 

  123. Ulusoy A, Bjorklund T, Hermening S, Kirik D (2007) In vivo gene delivery for development of mammalian models for Parkinson’s disease. Exp Neurol doi:10.1016/j.expneurol.2007.09.011

  124. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    PubMed  CAS  Google Scholar 

  125. Vaccari A, Ferraro L, Saba P, Ruiu S, Mocci I, Antonelli T, Tanganelli S (1998) Differential mechanisms in the effects of disulfiram and diethyldithiocarbamate intoxication on striatal release and vesicular transport of glutamate. J Pharmacol Exp Ther 285:961–967

    PubMed  CAS  Google Scholar 

  126. Vaccari A, Saba PL, Ruiu S, Collu M, Devoto P (1996) Disulfiram and diethyldithiocarbamate intoxication affects the storage and release of striatal dopamine. Toxicol Appl Pharmacol 139:102–108

    PubMed  CAS  Google Scholar 

  127. van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130:2535–2542

    PubMed  Google Scholar 

  128. van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K, Spooren WP, Ruegg MA, Lin S, Caroni P, Sommer B, Tolnay M, Bilbe G (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20:6021–6029

    PubMed  Google Scholar 

  129. Von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, Dawson TM (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA 101:10744–10749

    Google Scholar 

  130. Wakamatsu M, Ishii A, Iwata S, Sakagami J, Ukai Y, Ono M, Kanbe D, Muramatsu SI, Kobayashi K, Iwatsubo T, Yoshimoto M (2006) Selective loss of nigral dopamine neurons induced by overexpression of truncated human alpha-synuclein in mice. Neurobiol Aging doi:10.1016/j.neurobiolaging.2006.11.017

  131. Wallace RA, Boldry R, Schmittgen T, Miller D, Uretsky N (1984) Effect of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) on monoamine neurotransmitters in mouse brain & heart. Life Sci 35:285–291

    PubMed  CAS  Google Scholar 

  132. West AB, Maidment NT (2004) Genetics of parkin-linked disease. Hum Genet 114:327–336

    PubMed  CAS  Google Scholar 

  133. Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    PubMed  CAS  Google Scholar 

  134. Xu Z, Cawthon D, McCastlain KA, Slikker W Jr, Ali SF (2005) Selective alterations of gene expression in mice induced by MPTP. Synapse 55:45–51

    PubMed  CAS  Google Scholar 

  135. Yamaguchi H, Shen J (2007) Absence of dopaminergic neuronal degeneration and oxidative damage in aged DJ-1-deficient mice. Mol Neurodegener 2:10 doi.1186/1750-1326-2-10

    PubMed  Google Scholar 

  136. Yang W, Chen L, Ding Y, Zhuang X, Kang UJ (2007) Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice. Hum Mol Genet 16:2900–2910

    PubMed  CAS  Google Scholar 

  137. Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD (2006) Rat model of Parkinson’s disease: Chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Exp Neurol 200:172–183

    PubMed  CAS  Google Scholar 

  138. Zahm DS (1991) Compartments in rat dorsal and ventral striatum revealed following injection of 6-hydroxydopamine into the ventral mesencephalon. Brain Res 552:164–169

    PubMed  CAS  Google Scholar 

  139. Zeevalk GD, Manzino L, Sonsalla PK, Bernard LP (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson’s disease. Exp Neurol 203:512–520

    PubMed  CAS  Google Scholar 

  140. Zhu XR, Maskri L, Herold C, Bader V, Stichel CC, Gunturkun O, Lubbert H (2007) Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci 26:1902–1911

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants NS41799 (GEM), NS41545 (PS), P50 NS38367 and U54 ES12078 (MFC), and W81XWH-05-1-0580 (USAMRMC NETRP Program to GEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria E. Meredith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meredith, G.E., Sonsalla, P.K. & Chesselet, MF. Animal models of Parkinson’s disease progression. Acta Neuropathol 115, 385–398 (2008). https://doi.org/10.1007/s00401-008-0350-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0350-x

Keywords

Navigation