Skip to main content

Advertisement

Log in

Different Effects of Growth Factors on Proliferation and Matrix Production of Normal and Fibrotic Human Lung Fibroblasts

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Objectives and methods: In idiopathic pulmonary fibrosis (IPF), proliferation of fibroblasts and increased matrix deposition result in pulmonary damage and respiratory insufficiency. We cultured human fibroblasts from lung biopsies of healthy adults and of three patients with IPF (histologically usual interstital pneumonitis, UIP) in order to compare proliferation ([3H]thymidine incorporation, cell count) and matrix protein expression (immune fluorescence, quantification of fibronectin synthesis using time-resolved immune fluorescence) of normal and UIP fibroblasts in response to various growth factors. Findings: The growth factors platelet-derived growth factor-BB (PDGF), epidermal growth factor (EGF), insulin growth factor-1 (IGF-1), insulin-like growth factor-2 (IGF-2), tumor necrosis factor α (TNFα), Transforming growth factor-β (TGFβ1), and fibroblast growth factor-2 (FGF-2) stimulate proliferation of normal lung fibroblasts significantly more than proliferation of UIP fibroblasts. Immunofluorescence reveals extensive expression of collagen I, collagen III, and fibronectin induced by serum, TGFβ1, and TNFα. This expression is more pronounced in UIP fibroblasts than in normal fibroblasts. Quantification of fibronectin synthesis reveals an enhanced fibronectin synthesis by UIP fibroblasts in response to PDGF, EGF, IGF-1, IGF-2, TNFα, TGFβ1, and FGF-2). Conclusions: Fibroblasts from normal and UIP lungs differ in their response to growth factors: Whereas normal fibroblasts show a predominantly proliferative response, UIP fibroblasts show an enhanced synthetic activity. Different fibroblast responses may contribute to progressive pulmonary fibrosis in patients with UIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

EGF:

epidermal growth factor

FGF-2:

fibroblast growth factor-2 (basic fibroblast growth factor)

IGF-1:

insulin-like growth factor-1

IGF-2:

insulin-like growth factor-2

IPF:

idiopathic pulmonary fibrosis

PDGF:

platelet-derived growth factor-BB

SMC:

smooth muscle cell

TGFβ1:

transforming growth factor-β1

TNFα:

tumor necrosis factor α

UIP:

usual interstitial pneumonitis

UIP fibroblasts:

human lung fibroblasts derived from UIP lungs

References

  1. British Thoracic Society, Standards of Care Committee (1999) The diagnosis, assessment and treatment of diffuse parenchymal lung disease in adults Thorax 54:S1–S28

    Google Scholar 

  2. Green EH, (2002) Overview of pulmonary fibrosis Chest 122:334S–339S

    Article  PubMed  Google Scholar 

  3. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis N Engl J Med 345:517–525

    Article  PubMed  Google Scholar 

  4. King TE, Costabel U, Cordier J-F, DoPico GA, du Bois KM, Lynch JP, Myers J, Panos R, Raghu G, Schwartz D, Smith CM (2000) Idiopathic pulmonary fibrosis: diagnosis and treatment International consensus statement. Am J Resp Crit Care Med 161:646–664

    PubMed  Google Scholar 

  5. Katzenstein AL, Myers JL (1998) Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification Am J Respir Crit Care Med 157:1301–1315

    PubMed  Google Scholar 

  6. Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy Ann Intern Med 134: 136–151

    PubMed  Google Scholar 

  7. Zhang K, Rekheter MD, Gordon D, Phan SH (1994) Myofibroblasts and their repair role in lung collagen gene expression during pulmonary fibrosis Am J Pathol 145:114–125

    PubMed  Google Scholar 

  8. Serini G, Gabbiani G (1999) Mechanism of myofibroblast activity and phenotype modulation Exp Cell Res 250:273–283

    Article  PubMed  Google Scholar 

  9. Vaillant P, Menard O, Vignaud JM, Martinet N, Martinet Y (1996) The role of cytokines in human lung fibrosis Monaldi Arch Chest Dis 51:145–152

    PubMed  Google Scholar 

  10. Zhang K, Phan SH (1996) Cytokines and pulmonary fibrosis Biol Signals 5:232–239

    PubMed  Google Scholar 

  11. Pantelidis P, Fanning GC, Wells AU, Welsh KI, Du Bois RM (2001) Analysis of TNFα, TNF receptor II, and IL-6 polymorphisms in patients with idiopathic pulmonary fibrosis Am J Respir Crit Care Med 163:1432–1436

    PubMed  Google Scholar 

  12. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease N Engl J Med 342:1350–1358

    Article  PubMed  Google Scholar 

  13. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J (1997) Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung J Clin Invest 100:768–776

    PubMed  Google Scholar 

  14. Krein PM, Winston BW (2002) Roles of insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease Chest 122:289S–293S

    Article  PubMed  Google Scholar 

  15. Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y. (1993) Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis Am J Pathol 143:654–655

    Google Scholar 

  16. Lasky JA, Ortiz LA (2001) Antifibrotic therapy for the treatment of pulmonary fibrosis Am J Med Sci 322:213–221

    Article  PubMed  Google Scholar 

  17. Elias JA, Rossmann MD, Daniele RP (1982) Inhibition of human lung fibroblast growth by mononuclear cells Am Rev Respir Dis 125:701–705

    PubMed  Google Scholar 

  18. Raghu G, Chen YV, Rusch V, Rabinovitch PS (1988) Differential proliferation of fibroblasts cultured from normal and fibrotic lungs Am Rev Respir Dis 138:703–708

    PubMed  Google Scholar 

  19. Raghu G, Masta S, Meyers D, Narayanan AS (1989) Collagen Synthesis by normal and fibrotic human lung fibroblasts and the effect of TGFβ Am Rev Respir Dis 140:95–100

    PubMed  Google Scholar 

  20. Jordana M, Schulman J, McSharry C, Irving LB, Newhouse MT, Jordana G, Gauldie J (1988) Heterogeneous proliferative characteristics of human adult lung fibroblast lines and clonally derived fibroblasts from control and fibrotic tissue Am Rev Respir Dis 137:579–584

    PubMed  Google Scholar 

  21. Naragyabab AS, Whithey J, Souza A, Raghu G (1992) Effect of gamma-interferon on collagen synthesis by normal and fibrotic human lung fibroblasts Chest 101:1326–1331

    PubMed  Google Scholar 

  22. Pardo A, Selman M, Ramirez R, Ramos C, Montano M, Stricklin G, raghu G (1992): Production of collagenase and tissue inhibitor of metalloproteinases by fibroblasts derived from normal and fibrotic human lungs Chest 102:1085–1089

    PubMed  Google Scholar 

  23. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Article  PubMed  Google Scholar 

  24. Bachem MG, Schneider E, GroB H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grunert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans Gastroenterology 115:421–432

    PubMed  Google Scholar 

  25. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) TGFβ1 induces αSMC actin expression in granulation tissue and in quiescent and growing fibroblasts J Cell Biol 122:103–111

    Article  PubMed  Google Scholar 

  26. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruokoa S, Horie T (2001) Transforming growth factor-β1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-jun-NH2-terminal kinase-dependent pathway Am J Respir Crit Care Med 163:152–157

    PubMed  Google Scholar 

  27. Hautmann MB, Adam PJ, Owens GK (1999) Similarities and differences in SM α-actin induction by TGFβ in SM vs nonSMCs Arterioscl Thromb Vasc Biol 19:2049–2058

    PubMed  Google Scholar 

  28. Smith JD, Bryant SR, Couper LL, Vary CPH, Gotwals PJ, Koteliansky VE (1999) Soluble TGFβ2 receptor inhibits negative remodeling, fibroblast transdifferentiation and intimal lesion formation but not endothelial cell growth Circ Res 84:1212–1222

    PubMed  Google Scholar 

  29. Zhang K, Rekhter MD, Gordon D, Phan SH (1994) Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis Am J Pathol 145:114–125

    PubMed  Google Scholar 

  30. Gauldie J, Sime PJ, Xing Z, Marr B, Tremblay GM (1999) TGFβ gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis Curr Top Pathol 93:35–45

    PubMed  Google Scholar 

  31. Sheppard MN, Harrison NK (1992) Lung injury, inflammatory mediators, and fibroblast activation in fibrosing alveolitis. Thorax 47:1064–1074

    PubMed  Google Scholar 

  32. Phan SH (1996) Role of the myofibroblast in pulmonary fibrosis Kidney Int 49:S46–S48

    Google Scholar 

  33. Rojas-Valencia L, Montiel F, Montano M, Selman M, Pardo A (1995) Expression of a 2.8-kb PDGF-B/c-sis transcript and synthesis of PDGF-like protein by human lung fibroblasts Chest 108:240–245

    PubMed  Google Scholar 

  34. Stewart AG, Tomlinson PR, Femandes DJ, Wilson JW, Harris T (1995) Tumor necrosis factor apha modulates mitogenic responses of human cultured airway smooth muscle Am J Respir Cell Mol Biol 12:110–119

    PubMed  Google Scholar 

  35. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C (2001) TGFβ induces human renal fibroblast proliferation via induction of bFGF Kidney Int 59:579–592

    Article  PubMed  Google Scholar 

  36. Gunther A, Ruppert C, Schmidt R (2001) Surfactant alteration and replacement in adult respiratory distress syndrome Respir Res 2:353–364

    Article  PubMed  Google Scholar 

  37. Broekelmann TJ, Limper AH, Colby TV, McDonald JA (1991) Transforming growth factor β1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis Proc Natl Acad Sci USA 88:6642–6646

    PubMed  Google Scholar 

  38. Phan SH, (2002) The myofibroblast in pulmonary fibrosis. Chest 122:286S–289S

    Article  PubMed  Google Scholar 

  39. Ramos C, Montano M, Garcia-Alvarez J, Ruiz V, Uhal BD, Selman M, Pardo A (2001) Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression Am J Respir Med Cell Mol 24:591–598

    Google Scholar 

  40. Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU (2002) The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis Am J Respir Crit Car Med 166:173–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hetzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetzel, M., Bachem, M., Anders, D. et al. Different Effects of Growth Factors on Proliferation and Matrix Production of Normal and Fibrotic Human Lung Fibroblasts. Lung 183, 225–237 (2005). https://doi.org/10.1007/s00408-004-2534-z

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-004-2534-z

Keywords

Navigation