Skip to main content
Log in

Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Centromeres are required for faithful segregation of chromosomes in cell division. It is not clear how centromere sites are specified on chromosomes in vertebrates. We have previously introduced a mini-chromosome, named ST1, into a variety of cell lines including human HT1080, mouse LA9 and chicken DT40. This mini-chromosome, segregating faithfully in these cells, contains mouse minor and major, and human Y α-satellite DNA repeats. In this study, after determining the organisation of the satellite repeats, we investigated the location of the centromere on the mini-chromosome by combined immunocytochemistry and fluorescence in situ hybridisation analysis. Centromeric proteins were consistently co-localised with the minor satellite repeats in all three cell lines. When chromatin fibres were highly stretched, centromeric proteins were only seen on a small portion of the minor satellite repeats. These results indicate that a fraction of the minor satellite repeats is competent in centromere function not only in mouse but also in human and chicken cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c
Fig. 2a–e

Similar content being viewed by others

References

  • Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002) CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol 22:2229–2241

    Article  CAS  PubMed  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    Article  CAS  PubMed  Google Scholar 

  • Broccoli D, Miller OJ, Miller DA (1990) Relationship of mouse minor satellite DNA to centromere activity. Cytogenet Cell Genet 54:182–186

    CAS  PubMed  Google Scholar 

  • Choo KHA (1997a) The centromere. Oxford University Press, Oxford

    Google Scholar 

  • Choo KHA (1997b) Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet 61:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Cooke CA, Bernat RL, Earnshaw WC (1990) CENP-B: a major human centromere protein located beneath the kinetochore. J Cell Biol 110:1475–1488

    Article  CAS  PubMed  Google Scholar 

  • Craig JM, Wong LH, Lo AW, Earle E, Choo KH (2003) Centromeric chromatin pliability and memory at a human neocentromere. EMBO J 22:2495–2504

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Cooke CA (1991) Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation. J Cell Sci 98:443–461

    PubMed  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    CAS  PubMed  Google Scholar 

  • Earnshaw WC, Ratrie H III, Stetten G (1989) Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12

    CAS  PubMed  Google Scholar 

  • Fisher AM, Al-Gazali L, Pramathan T, Quaife R, Cockwell AE, Barber JC, Earnshaw WC, Axelman J, Migeon BR, Tyler-Smith C (1997) Centromeric inactivation in a dicentric human Y;21 translocation chromosome. Chromosoma 106:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa T, Pendon C, Morris J, Brown W (1999) CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J 18:4196–4209

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa T, Mikami Y, Nishihashi A, Regnier V, Haraguchi T, Hiraoka Y, Sugata N, Todokoro K, Brown W, Ikemura T (2001) CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20:4603–4617

    Article  CAS  PubMed  Google Scholar 

  • Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E (1995) Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103:685–692

    Article  CAS  PubMed  Google Scholar 

  • Gimelli G, Zuffardi O, Giglio S, Zeng C, He D (2000) CENP-G in neocentromeres and inactive centromeres. Chromosoma 109:328–333

    CAS  PubMed  Google Scholar 

  • Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160:25–39

    Article  CAS  PubMed  Google Scholar 

  • Haaf T, Ward DC (1994) Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3:697–709

    CAS  PubMed  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    CAS  PubMed  Google Scholar 

  • He D, Zeng C, Woods K, Zhong L, Turner D, Busch RK, Brinkley BR, Busch H (1998) CENP-G: a new centromeric protein that is associated with the alpha-1 satellite DNA subfamily. Chromosoma 107:189–197

    Article  CAS  PubMed  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA 97:1148–1153

    Article  CAS  PubMed  Google Scholar 

  • Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H, Hill J, Wreford NG, de Kretser DM, Cancilla MR, Howman E, Hii L, Cutts SM, Irvine DV, Choo KH (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 141:309–319

    Article  CAS  PubMed  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439

    CAS  PubMed  Google Scholar 

  • Kalitsis P, Fowler KJ, Earle E, Hill J, Choo KH (1998) Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc Natl Acad Sci USA 95:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Kipling D, Ackford HE, Taylor BA, Cooke HJ (1991) Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11:235–241

    CAS  PubMed  Google Scholar 

  • Liu ST, Hittle JC, Jablonski SA, Campbell MS, Yoda K, Yen TJ (2003) Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol 5:341–345

    Article  CAS  PubMed  Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Masumoto H, Ikeno M, Nakano M, Okazaki T, Grimes B, Cooke H, Suzuki N (1998) Assay of centromere function using a human artificial chromosome. Chromosoma 107:406–416

    Article  CAS  PubMed  Google Scholar 

  • Measday V, Hailey DW, Pot I, Givan SA, Hyland KM, Cagney G, Fields S, Davis TN, Hieter P (2002) Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 16:101–113

    Article  CAS  PubMed  Google Scholar 

  • Mejia JE, Alazami A, Willmott A, Marschall P, Levy E, Earnshaw WC, Larin Z (2002) Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 79:297–304

    Article  CAS  PubMed  Google Scholar 

  • Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6:793–807

    CAS  PubMed  Google Scholar 

  • Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H, Earnshaw WC, Fukagawa T (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2:463–476

    Article  CAS  PubMed  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775

    Article  CAS  PubMed  Google Scholar 

  • Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88:3734–3738

    CAS  PubMed  Google Scholar 

  • Perez-Castro AV, Shamanski FL, Meneses JJ, Lovato TL, Vogel KG, Moyzis RK, Pedersen R (1998) Centromeric protein B null mice are viable with no apparent abnormalities. Dev Biol 201:135–143

    Article  CAS  PubMed  Google Scholar 

  • Rattner JB (1991) The structure of the mammalian centromere. Bioessays 13:51–56

    CAS  PubMed  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA, Ratrie H III, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125

    CAS  PubMed  Google Scholar 

  • Shen MH, Yang J, Loupart ML, Smith A, Brown W (1997) Human mini-chromosomes in mouse embryonal stem cells. Hum Mol Genet 6:1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Shen MH, Mee PJ, Nichols J, Yang J, Brook F, Gardner RL, Smith AG, Brown WR (2000) A structurally defined mini-chromosome vector for the mouse germ line. Curr Biol 10:31–34

    Article  CAS  PubMed  Google Scholar 

  • Shen MH, Ross A, Yang J, de las Heras JI, Cooke H (2001a) Neo-centromere formation on a 2.6 Mb mini-chromosome in DT40 cells. Chromosoma 110:421–429

    Article  CAS  PubMed  Google Scholar 

  • Shen MH, Yang JW, Yang J, Pendon C, Brown WR (2001b) The accuracy of segregation of human mini-chromosomes varies in different vertebrate cell lines, correlates with the extent of centromere formation and provides evidence for a trans-acting centromere maintenance activity. Chromosoma 109:524–535

    CAS  PubMed  Google Scholar 

  • Shinohara T, Tomizuka K, Takehara S, Yamauchi K, Katoh M, Ohguma A, Ishida I, Oshimura M (2000) Stability of transferred human chromosome fragments in cultured cells and in mice. Chromosome Res 8:713–725

    Article  CAS  PubMed  Google Scholar 

  • Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ (2002) Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 21:5269–5280

    Article  CAS  PubMed  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    CAS  PubMed  Google Scholar 

  • Sugata N, Li S, Earnshaw WC, Yen TJ, Yoda K, Masumoto H, Munekata E, Warburton PE, Todokoro K (2000) Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere—kinetochore complexes. Hum Mol Genet 9:2919–2926

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Tsutsui M, AuCoin D, Vig BK (1999) Visualization of prekinetochore locus on the centromeric region of highly extended chromatin fibers: does kinetochore autoantigen CENP-C constitute a kinetochore organizing center? Chromosome Res 7:9–19

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Nureki O, Kurumizaka H, Fukai S, Kawaguchi S, Ikuta M, Iwahara J, Okazaki T, Yokoyama S (2001) Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. EMBO J 20:6612–6618

    Article  CAS  PubMed  Google Scholar 

  • Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7:897–900

    Article  CAS  PubMed  Google Scholar 

  • Vig BK, Richards BT (1992) Formation of primary constriction and heterochromatin in mouse does not require minor satellite DNA. Exp Cell Res 201:292–298

    CAS  PubMed  Google Scholar 

  • Vig BK, Latour D, Frankovich J (1994) Dissociation of minor satellite from the centromere in mouse. J Cell Sci 107:3091–3095

    CAS  PubMed  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF, Poirier GG, Earnshaw WC (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Article  CAS  PubMed  Google Scholar 

  • Willard HF (1987) Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3:192–198

    Article  CAS  Google Scholar 

  • Wong AK, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucleic Acids Res 16:11645–11661

    CAS  PubMed  Google Scholar 

  • Yang JW, Pendon C, Yang J, Haywood N, Chand A, Brown WR (2000) Human mini-chromosomes with minimal centromeres. Hum Mol Genet 9:1891–1902

    Article  CAS  PubMed  Google Scholar 

  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council and the Wellcome Trust in the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hong Shen.

Additional information

Communicated by E.A. Nigg

Kang Zeng and Jose I. de las Heras contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, K., de las Heras, J.I., Ross, A. et al. Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells. Chromosoma 113, 84–91 (2004). https://doi.org/10.1007/s00412-004-0299-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0299-z

Keywords

Navigation