Skip to main content
Log in

The genome and the nucleus: a marriage made by evolution

Genome organisation and nuclear architecture

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Genomes are housed within cell nuclei as individual chromosome territories. Nuclei contain several architectural structures that interact and influence the genome. In this review, we discuss how the genome may be organised within its nuclear environment with the position of chromosomes inside nuclei being either influenced by gene density or by chromosomes size. We compare interphase genome organisation in diverse species and reveal similarities and differences between evolutionary divergent organisms. Genome organisation is also discussed with relevance to regulation of gene expression, development and differentiation and asks whether large movements of whole chromosomes are really observed during differentiation. Literature and data describing alterations to genome organisation in disease are also discussed. Further, the nuclear structures that are involved in genome function are described, with reference to what happens to the genome when these structures contain protein from mutant genes as in the laminopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abranches R, Beven AF, Aragon-Alcaide L, Shaw PJ (1998) Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol 143:5–12

    Article  PubMed  CAS  Google Scholar 

  • Alexandrova O, Solovei I, Cremer T, David CN (2003) Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra. Chromosoma 112:190–200

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, Stevens DL, Goodhead DT (2002) M-FISH analysis shows that complex chromosome arrangements induced by alpha-particle tracks are cumalative products of localised rearrangements. PNAS USA 99:12167–12172

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Kirkham AJ, Hulten MA (1994) XY chromosome behaviour in the germ-line of the human male: a FISH analysis of spatial orientation, chromatin condensation and pairing. Chromosome Res 2:445–452

    Article  PubMed  CAS  Google Scholar 

  • Arsuaga J, Greulich-Bode KM, Vazquez M, Bruckner M, Hahnfeldt P, Brenner DJ, Sachs R, Hlatky L (2004) Chromosome spatial clustering inferred from radiogenic aberrations. Int J Radiat Biol 80:507–515

    Article  PubMed  CAS  Google Scholar 

  • Barboro P, D'Arrigo C, Diaspro A, Mormino M, Alberti I, Parodi S, Patrone E, Balbi C (2002) Unraveling the organization of the internal nuclear matrix: RNA-dependent anchoring of NuMA to a lamin scaffold. Exp Cell Res 279:202–218

    Article  PubMed  CAS  Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676–677

    PubMed  CAS  Google Scholar 

  • Beil M, Durschmeid D, Paschke S, Schreiner B, Nolte U, Bruel A, Irinopoulou T (2002) Spatial distribution patterns of interphase centromeres during retinoic acid-induced differentiation of promyelocytic leukemia cells. Cytometry 47:217–225

    Article  PubMed  Google Scholar 

  • Belmont AS, Straight AF (1998) In vivo visualization of chromosomes using lac operator-repressor binding. Trends Cell Biol 8:121–124

    PubMed  CAS  Google Scholar 

  • Bickmore WA, Oghene K (1996) Visualizing the spatial relationships between defined DNA sequences and the axial region of extracted metaphase chromosomes. Cell 84:95–104

    Article  PubMed  CAS  Google Scholar 

  • Bickmore WA, Teague P (2002) Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 10:707–715

    Article  PubMed  CAS  Google Scholar 

  • Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81:18–25

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal SS, Clark GB, Roux SJ (2004) Biochemical and immunological characterization of pea nuclear intermediate filament proteins. Planta 218:965–975

    Article  PubMed  CAS  Google Scholar 

  • Bode J, Benham C, Knopp A, Mielke C (2000) Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements). Crit Rev Eukaryot Gene Expr 10:73–90

    PubMed  CAS  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Complete 3D-maps of chromosome positions in human male fibroblast nuclei and prometaphase rosettes demonstrate a chromosome size dependent, probabilistic arrangement. PLoS Biology, (in press)

  • Borden J, Manuelidis L (1988) Movement of the X chromosome in epilepsy. Science 242:1687–1691

    PubMed  CAS  Google Scholar 

  • Boveri T (1888) Zellenstudien II. Die befruchtung und teilung des eies von ascaris megalocephala. Jena Zeit Naturw 22:685–882

    Google Scholar 

  • Boveri T (1909) Ueber geschlechstschromosomen bei nematoden. Arch Zellf 4:132–141

    Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    PubMed  CAS  Google Scholar 

  • Bridger JM, Bickmore WA (1998) Putting the genome on the map. Trends Genet 14:403–409

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Herrmann H, Munkel C, Lichter P (1998a) Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 111:1241–1253

    PubMed  CAS  Google Scholar 

  • Bridger JM, Kill IR, Lichter P (1998b) Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res 6:13–24

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Meaburn KJ, Foster HA, Figgitt M, Bonne G, Levy N, Griffin DK, Kill IR (2004a) The role of nuclear structure in genomic health. Chromosome Res 12(suppl 1)

  • Bridger JM, Reichenzeller M, Lichter P, Herrmann H (2004b) In: Hemmerich P, Diekmann S (eds) The interchromosomal domain compartment: an active space within the nucleus. Chapter in visions of the cell nucleus

  • Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, Krausslich HG, Lichter P (2005) Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 302:180–193

    Article  PubMed  CAS  Google Scholar 

  • Broers JL, Machiels BM, van Eys GJ, Kuijpers HJ, Manders EM, van Driel R, Ramaekers FC (1999) Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J Cell Sci 112:3463–3475

    PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91 845:854

    Article  Google Scholar 

  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3:207–217

    Article  PubMed  CAS  Google Scholar 

  • Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM (2005) Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J Cell Biol 168:375–387

    Article  PubMed  CAS  Google Scholar 

  • Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM (2001) Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J 20:4399–4407

    Article  PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439

    Article  PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Drubin DA, Rando OJ, Silver PA (2005) Developmentally induced changes in transcriptional program alter spatial organisation across chromosomes. Genes Dev 19(1188):1198

    Article  CAS  Google Scholar 

  • Chaly N, Little JE, Brown DL (1985) Localization of nuclear antigens during preparation of nuclear matrices in situ. Can J Biochem Cell Biol 63:644–653

    PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004a) Chromatin decondensation and nuclear reorganization of the Hoxb locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004b) Does looping and clustering in the nucleus regulate gene expression? Curr Opin Cell Biol 16:256–262

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA (2005) Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132:2215–2223

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Zhou J, Dai YR (2000) Cleavage of lamin-like proteins in in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. FEBS Lett 480:165–168

    Article  PubMed  CAS  Google Scholar 

  • Chevret E, Volpi EV, Sheer D (2000) Mini review: form and function in the human interphase chromosome. Cytogenet Cell Genet 90:13–21

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  PubMed  CAS  Google Scholar 

  • Clemson CM, Lawrence JB (1996) Multifunctional compartments in the nucleus: insights from DNA and RNA localization. J Cell Biochem 62:181–190

    Article  PubMed  CAS  Google Scholar 

  • Cohen M, Lee KK, Wilson KL, Gruenbaum Y (2001) Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem Sci 26:41–47

    Article  PubMed  CAS  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125:532–538

    Article  PubMed  CAS  Google Scholar 

  • Craig JM, Bickmore WA (1994) The distribution of CpG islands in mammalian chromosomes. Nat Genet 7:376–382

    Article  PubMed  CAS  Google Scholar 

  • Craig JM, Boyle S, Perry P, Bickmore WA (1997) Scaffold attachments within the human genome. J Cell Sci 110:2673–2682

    PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Cremer C, Zorn C, Cremer T (1974) An ultraviolet laser microbeam for 257 nm. Microsc Acta 75:331–337

    PubMed  CAS  Google Scholar 

  • Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80:235–246

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Schertan H, Reid T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792

    PubMed  CAS  Google Scholar 

  • Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I, Zink D, Cremer C (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10:179–212

    PubMed  CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Dehghani H, Dellaire G, Bazett-Jones DP (2005) Organization of chromatin in the interphase mammalian cell. Micron 36:95–108

    Article  PubMed  Google Scholar 

  • de Lange T (1992) Human telomeres are attached to the nuclear matrix. EMBO J 11:717–724

    PubMed  Google Scholar 

  • de Lara J, Wydner KL, Hyland KM, Ward WS (1993) Fluorescent in situ hybridization of the telomere repeat sequence in hamster sperm nuclear structures. J Cell Biochem 53:213–221

    Article  PubMed  Google Scholar 

  • Dietzel S, Eils R, Satzler K, Bornfleth H, Jauch A, Cremer C, Cremer T (1998a) Evidence against a looped structure of the inactive human X-chromosome territory. Exp Cell Res 240:187–196

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Jauch A, Kienle D, Qu G, Holtgreve-Grez H, Eils R, Munkel C, Bittner M, Meltzer PS, Trent JM, Cremer T (1998b) Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res 6:25–33

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Schiebel K, Little G, Edelmann P, Rappold GA, Eils R, Cremer C, Cremer T (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252:363–375

    Article  PubMed  CAS  Google Scholar 

  • Dijkwel PA, Hamlin JL (1988) Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihydrofolate reductase domain of Chinese hamster ovary cells. Mol Cell Biol 8:5398–5409

    PubMed  CAS  Google Scholar 

  • Djeliova V, Russev G, Anachkova B (2001) Dynamics of association of origins of DNA replication with the nuclear matrix during the cell cycle. Nucleic Acids Res 29:3181–3187

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558

    Article  PubMed  CAS  Google Scholar 

  • Dreger CK, Konig AR, Spring H, Lichter P, Herrmann H (2002) Investigation of nuclear architecture with a domain-presenting expression system. J Struct Biol 140:100–115

    Article  PubMed  CAS  Google Scholar 

  • Edelmann P, Bornfleth H, Zink D, Cremer T, Cremer C (2001) Morphology and dynamics of chromosome territories in living cells. Biochim Biophys Acta 1551:M29–M39

    PubMed  CAS  Google Scholar 

  • Eils R, Bertin E, Saracoglu K, Rinke B, Schrock E, Parazza F, Usson Y, Robert-Nicoud M, Stelzer EH, Chassery JM et al (1995) Application of confocal laser microscopy and three-dimensional Voronoi diagrams for volume and surface estimates of interphase chromosomes. J Microsc 177:150–161

    PubMed  CAS  Google Scholar 

  • Eils R, Dietzel S, Bertin E, Schrock E, Speicher MR, Ried T, Robert-Nicoud M, Cremer C, Cremer T (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135:1427–1440

    Article  PubMed  CAS  Google Scholar 

  • Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    Article  PubMed  CAS  Google Scholar 

  • Enoch T, Peter M, Nurse P, Nigg EA (1991) p34cdc2 acts as a lamin kinase in fission yeast. J Cell Biol 112:797–807

    Article  PubMed  CAS  Google Scholar 

  • Erber A, Riemer D, Hofemeister H, Bovenschulte M, Stick R, Panopoulou G, Lehrach H, Weber K (1999) Characterization of the Hydra lamin and its gene: a molecular phylogeny of metazoan lamins. J Mol Evol 49:260–271

    PubMed  CAS  Google Scholar 

  • Federico C, Saccone S, Andreozzi L, Motta S, Russo V, Carels N, Bernardi G (2004) The pig genome: compositional analysis and identification of the gene-richest regions in chromosomes and nuclei. Gene 343:245–251

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Yang F, Rens W, O'Brien PC (2005) The impact of chromosome sorting and painting on the comparative analysis of primate genomes. Cytogenet Genome Res 108:112–121

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139:1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Griffin DK, Leese HJ, Sturmey RG, Stokes PJ, Abeydeera LR, Bridger JM (2004) Genome and nuclear architecture organisation during development and differentiation using the pig as a model organism. Chromosome Res 12(supp 1):3–4

    Google Scholar 

  • Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118:1811–1820

    Article  PubMed  CAS  Google Scholar 

  • Fronicke L, Chowdhary BP, Scherthan H, Gustavsson I (1996) A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7:285–290

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K (1999) LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J Cell Sci 112:2485–2492

    PubMed  CAS  Google Scholar 

  • Galiova G, Bartova E, Kozubek S (2004) Nuclear topography of beta-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells. Blood Cells Mol Dis 33:4–14

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Thornhill A, Fernandez-Donoso R, Berrios S, Capanna E, Redi CA (2001) Alteration of nuclear architecture in male germ cells of chromosomally derived subfertile mice. J Cell Sci 114:4429–4434

    PubMed  CAS  Google Scholar 

  • Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cytol 242:283–336

    PubMed  CAS  Google Scholar 

  • Girard-Reydet C, Gregoire D, Vassetzky Y, Mechali M (2004) DNA replication initiates at domains overlapping with nuclear matrix attachment regions in the xenopus and mouse c-myc promoter. Gene 332:129–138

    Article  PubMed  CAS  Google Scholar 

  • Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16:533–547

    Article  PubMed  CAS  Google Scholar 

  • Gorisch SM, Richter K, Scheuermann MO, Herrmann H, Lichter P (2003) Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules. Exp Cell Res 289:282–294

    Article  PubMed  CAS  Google Scholar 

  • Goto B, Okazaki K, Niwa O (2001) Cytoplasmic microtubular system implicated in de novo formation of a Rabl-like orientation of chromosomes in fission yeast. J Cell Sci 114:2427–2435

    PubMed  CAS  Google Scholar 

  • Greaves IK, Rens W, Ferguson-Smith MA, Griffin D, Marshall Graves JA (2003) Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Res 11:503–512

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219:604–611

    Article  PubMed  CAS  Google Scholar 

  • Habermann FA, Cremer M, Walter J, Kreth G, von Hase J, Bauer K, Wienberg J, Cremer C, Cremer T, Solovei I (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9:569–584

    Article  PubMed  CAS  Google Scholar 

  • He DC, Nickerson JA, Penman S (1990) Core filaments of the nuclear matrix. J Cell Biol 110:569–580

    Article  PubMed  CAS  Google Scholar 

  • He DC, Martin T, Penman S (1991) Localization of heterogeneous nuclear ribonucleoprotein in the interphase nuclear matrix core filaments and on perichromosomal filaments at mitosis. Proc Natl Acad Sci U S A 88:7469–7473

    PubMed  CAS  Google Scholar 

  • Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MA, Delany ME, Dodgson JB, Chinwalla AT, Cliften PF, Clifton SW, Delehaunty KD, Fronick C, Fulton RS, Graves TA, Kremitzki C et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M, Sedat JW (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. II. Chromosome spatial organization and gene regulation. J Cell Biol 104:1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Holy J, Wessel G, Berg L, Gregg RG, Schatten G (1995) Molecular characterization and expression pattern of a B-type nuclear lamin during sea urchin embryogenesis. Dev Biol 168:464–478

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Sasseville AM, Raymond Y, Cook PR (1995) Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J Cell Sci 108:635–644

    PubMed  CAS  Google Scholar 

  • Huber MC, Graf T, Sippel AE, Bonifer C (1995) Dynamic changes in the chromatin of the chicken lysozyme gene domain during differentiation of multipotent progenitors to macrophages. DNA Cell Biol 14:397–402

    PubMed  CAS  Google Scholar 

  • Hulspas R, Houtsmuller AB, Krijtenburg PJ, Bauman JG, Nanninga N (1994) The nuclear position of pericentromeric DNA of chromosome 11 appears to be random in G0 and non-random in G1 human lymphocytes. Chromosoma 103:286–292

    PubMed  CAS  Google Scholar 

  • Hutchison CJ, Worman HJ (2004) A-type lamins: guardians of the soma? Nat Cell Biol 6:1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Hutchison CJ, Alvarez-Reyes M, Vaughan OA (2001) Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes? J Cell Sci 114:9–19

    PubMed  CAS  Google Scholar 

  • Jackson DA (2003) The anatomy of transcription sites. Curr Opin Cell Biol 15:311–317

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Cook PR (1985) Transcription occurs at a nucleoskeleton. EMBO J 4:919–925

    PubMed  CAS  Google Scholar 

  • Jenke AC, Stehle IM, Herrmann F, Eisenberger T, Baiker A, Bode J, Fackelmayer FO, Lipps HJ (2004) Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci U S A 101:11322–11327

    Article  PubMed  CAS  Google Scholar 

  • Jensen AL, Brasch K (1985) Nuclear development in locust fat body: the influence of juvenile hormone on inclusion bodies and the nuclear matrix. Tissue Cell 17:117–130

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Garcia LF, Spector DL (1993) In vivo evidence that transcription and splicing are coordinated by a recruiting mechanism. Cell 73:47–59

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T (2004) Spatial genome organization during T-cell differentiation. Cytogenet Genome Res 105:292–301

    Article  PubMed  CAS  Google Scholar 

  • Klinger HP (1958) The fine structure of the sex chromatin body. Exp Cell Res 14:207–211

    Article  PubMed  CAS  Google Scholar 

  • Knoch A, Münkel C, Langowski J (1999) Three-dimensional organization of chromosome territories and the human interphase nucleus. In: high performance computing in science and engineering. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kozubek S, Lukasova E, Mareckova A, Skalnikova M, Kozubek M, Bartova E, Kroha V, Krahulcova E, Slotova J (1999) The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma 108:426–435

    Article  Google Scholar 

  • Kuroda M, Tanabe H, Yoshida K, Oikawa K, Saito A, Kiyuna T, Mizusawa H, Mukai K (2004) Alteration of chromosome positioning during adipocyte differentiation. J Cell Sci 117:5897–5903

    Article  PubMed  CAS  Google Scholar 

  • Kurz A, Lampel S, Nickolenko JE, Bradl J, Benner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JB, Singer RH, Marselle LM (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57:493–502

    Article  PubMed  CAS  Google Scholar 

  • Lehner CF, Stick R, Eppenberger HM, Nigg EA (1987) Differential expression of nuclear lamin proteins during chicken development. J Cell Biol 105:577–587

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR, Mosgoller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci 95:335–341

    PubMed  CAS  Google Scholar 

  • Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ (1995) CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol 130:507–518

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Cremer T, Tang CJ, Watkins PC, Manuelidis L, Ward DC (1988) Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc Natl Acad Sci U S A 85:9664–9668

    PubMed  CAS  Google Scholar 

  • Liu J, Rolef Ben Shahar T, Riemer D, Treinin M, Spann P, Weber K, Fire A, Gruenbaum Y (2000) Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell 11:3937–3947

    PubMed  CAS  Google Scholar 

  • Luderus ME, van Steensel B, Chong L, Sibon OC, Cremers FF, de Lange T (1996) Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J Cell Biol 135:867–881

    Article  PubMed  CAS  Google Scholar 

  • Lukasova E, Kozubek S, Kozubek M, Kroha V, Mareckova A, Skalnikova M, Bartova E, Slotova J (1999) Chromosomes participating in translocations typical of malignant hemoblastoses are also involved in exchange aberrations induced by fast neutrons. Radiat Res 151:375–384

    PubMed  CAS  Google Scholar 

  • Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Fransz PF, Ali HB, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Siegel AJ, Berezney R (1999) Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J Cell Biol 146:531–542

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002a) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157:579–589

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002b) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763

    Article  PubMed  CAS  Google Scholar 

  • Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279:25567–25573

    Article  PubMed  CAS  Google Scholar 

  • Manders EM, Kimura H, Cook PR (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144:813–821

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L (1985) Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet 71:288–293

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L, Borden J (1988) Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96:397–410

    Article  PubMed  CAS  Google Scholar 

  • Markova D, Donev R, Patriotis C, Djondjurov L (1994) Interphase chromosomes of Friend-S cells are attached to the matrix structures through the centromeric/telomeric regions. DNA Cell Biol 13:941–951

    Article  PubMed  CAS  Google Scholar 

  • Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7:825–842

    PubMed  CAS  Google Scholar 

  • Martins S, Eikvar S, Furukawa K, Collas P (2003) HA95 and LAP2 beta mediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication. J Cell Biol 160:177–188

    Article  PubMed  CAS  Google Scholar 

  • Matera AG (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9:302–309

    Article  PubMed  CAS  Google Scholar 

  • McNulty AK, Saunders MJ (1992) Purification and immunological detection of pea nuclear intermediate filaments: evidence for plant nuclear lamins. J Cell Sci 103:407–414

    PubMed  CAS  Google Scholar 

  • McQueen HA, Clark VH, Bird AP, Yerle M, Archibald AL (1997) CpG islands of the pig. Genome Res 7:924–931

    PubMed  CAS  Google Scholar 

  • Meaburn K (2005) The role of nuclear architecture in genomic stability. PhD thesis, Brunel University

  • Meaburn KJ, Newbold RF, Cox H, Bridger JM (2004) Using the monochromosome hybrid cell lines to identify nuclear factors required for correct human genome organisation. Chromosome Res 12(supp 1):99

    Google Scholar 

  • Merkenschlager M, Amoils S, Roldan E, Rahemtulla A, O'connor E, Fisher AG, Brown KE (2004) Centromeric repositioning of coreceptor loci predicts their stable silencing and the CD4/CD8 lineage choice. J Exp Med 200:1437–1444

    Article  PubMed  CAS  Google Scholar 

  • Minguez A, Moreno Diaz de la Espina S (1993) Immunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 106:431–439

    PubMed  CAS  Google Scholar 

  • Mislow JM, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL, McNally EM (2002) Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett 525:135–140

    Article  PubMed  CAS  Google Scholar 

  • Moreno Diaz De La Espina S, Samaniego R, Yu W, De La Torre C (2003) Intermediate filament proteins with nuclear functions: NuMA, lamin-like proteins and MFP1. Cell Biol Int 27:233–235

    Article  PubMed  CAS  Google Scholar 

  • Mounkes LC, Burke B, Stewart CL (2001) The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc Med 11:280–285

    Article  PubMed  CAS  Google Scholar 

  • Mounkes L, Kozlov S, Burke B, Stewart CL (2003) The laminopathies: nuclear structure meets disease. Curr Opin Genet Dev 13:223–230

    Article  PubMed  CAS  Google Scholar 

  • Muller S, O'Brien PC, Ferguson-Smith MA, Wienberg J (1997) Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78:260–271

    PubMed  CAS  Google Scholar 

  • Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee H (1999) Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J Cell Sci 112:525–535

    PubMed  CAS  Google Scholar 

  • Nalepa G, Harper JW (2004) Visualization of a highly organized intranuclear network of filaments in living mammalian cells. Cell Motil Cytoskelet 59:94–108

    Article  CAS  Google Scholar 

  • Neri LM, Raymond Y, Giordano A, Capitani S, Martelli AM (1999) Lamin A is part of the internal nucleoskeleton of human erythroleukemia cells. J Cell Physiol 178:284–295

    Article  PubMed  CAS  Google Scholar 

  • Nickerson J (2001) Experimental observations of a nuclear matrix. J Cell Sci 114:463–474

    PubMed  CAS  Google Scholar 

  • Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141

    Article  PubMed  CAS  Google Scholar 

  • Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108:501–513

    Article  PubMed  CAS  Google Scholar 

  • Oegema K, Marshall WF, Sedat JW, Alberts BM (1997) Two proteins that cycle asynchronously between centrosomes and nuclear structures: Drosophila CP60 and CP190. J Cell Sci 110:1573–1583

    PubMed  CAS  Google Scholar 

  • Okabe J, Eguchi A, Wadhwa R, Rakwal R, Tsukinoki R, Hayakawa T, Nakanishi M (2004) Limited capacity of the nuclear matrix to bind telomere repeat binding factor TRF1 may restrict the proliferation of mortal human fibroblasts. Hum Mol Genet 13:285–293

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Panning MM, Gilbert DM (2005) Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J Cell Biochem 95:74–82

    Article  PubMed  CAS  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432

    Article  PubMed  CAS  Google Scholar 

  • Parada LA, McQueen PG, Munson PJ, Misteli T (2002) Conservation of relative chromosome positioning in normal and cancer cells. Curr Biol 12:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44

    Article  PubMed  Google Scholar 

  • Park PC, De Boni U (1998) specific conformation of the territory of chromosome 17 locates ERBB-2 sequences to a DNase-hypersensitive domain at the nuclear periphery. Chromosoma 107:87–95

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    Article  PubMed  CAS  Google Scholar 

  • Philimonenko VV, Flechon JE, Hozak P (2001) The nucleoskeleton: a permanent structure of cell nuclei regardless of their transcriptional activity. Exp Cell Res 264:201–210

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A 85:9138–9142

    PubMed  CAS  Google Scholar 

  • Politz JC, Pederson T (2000) Review: movement of mRNA from transcription site to nuclear pores. J Struct Biol 129:252–257

    Article  PubMed  CAS  Google Scholar 

  • Politz JC, Tuft RA, Pederson T, Singer RH (1999) Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr Biol 9:285–291

    Article  PubMed  CAS  Google Scholar 

  • Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15:7108–7119

    PubMed  CAS  Google Scholar 

  • Rabl K (1885) Ûber Zelltheilung. Gegenbaurs Morphol Jahrb 10:214–330

    Google Scholar 

  • Radichev I, Parashkevova A, Anachkova B (2005) Initiation of DNA replication at a nuclear matrix-attached chromatin fraction. J Cell Physiol 203:71–77

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11:513–525

    Article  PubMed  CAS  Google Scholar 

  • Rens W, O'Brien PC, Graves JA, Ferguson-Smith MA (2003) Localisation of chromosome regions in potoroo nuclei (Potorous tridactylus Marspialia: Potoroinae) Chromosoma 112:66–76

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Reichenzeller M, Gorisch SM, Schmidt U, Scheuermann MO, Herrmann H, Lichter P (2005) Characterization of a nuclear compartment shared by nuclear bodies applying ectopic protein expression and correlative light and electron microscopy. Exp Cell Res 303:128–137

    PubMed  CAS  Google Scholar 

  • Riemer D, Dodemont H, Weber K (1993) A nuclear lamin of the nematode Caenorhabditis elegans with unusual structural features; cDNA cloning and gene organization. Eur J Cell Biol 62:214–223

    PubMed  CAS  Google Scholar 

  • Riemer D, Wang J, Zimek A, Swalla BJ, Weber K (2000) Tunicates have unusual nuclear lamins with a large deletion in the carboxyterminal tail domain. Gene 255:317–325

    Article  PubMed  CAS  Google Scholar 

  • Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378

    PubMed  CAS  Google Scholar 

  • Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700

    Article  PubMed  CAS  Google Scholar 

  • Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34:287–291

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Zink D (2004) Nascent RNA synthesis in the context of chromatin architecture. Chromosome Res 12:439–451

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301:266–279

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann MO, Murmann AE, Richter K, Gorisch SM, Herrmann H, Lichter P (2005) Characterization of nuclear compartments identified by ectopic markers in mammalian cells with distinctly different karyotype. Chromosoma 114:39–53

    Article  PubMed  Google Scholar 

  • Schirmer EC, Florens L, Guan T, Yates JR III, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382

    Article  PubMed  CAS  Google Scholar 

  • Schook LB, Beever JE, Rogers J, Humphray S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K (2005) Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Compar Funct Genom 6:251–255

    Article  CAS  Google Scholar 

  • Shaw P, Doonan J (2005) The nucleolus. Playing by different rules? Cell Cycle 4:102–105

    PubMed  CAS  Google Scholar 

  • Sherratt DJ (2003) Bacterial chromosome dynamics. Science 301:780–785

    Article  PubMed  CAS  Google Scholar 

  • Simos G, Georgatos SD (1992) The inner nuclear membrane protein p58 associates in vivo with a p58 kinase and the nuclear lamins. EMBO J 11:4027–4036

    PubMed  CAS  Google Scholar 

  • Smith DE, Gruenbaum Y, Berrios M, Fisher PA (1987) Biosynthesis and interconversion of Drosophila nuclear lamin isoforms during normal growth and in response to heat shock. J Cell Biol 105:771–790

    Article  PubMed  CAS  Google Scholar 

  • Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44

    Article  PubMed  CAS  Google Scholar 

  • Stahl A, Hartung M, Vagner-Capodano AM, Fouet C (1976) Chromosomal constitution of nucleolus-associated chromatin in man. Hum Genet 35:27–34

    Article  PubMed  CAS  Google Scholar 

  • Steen RL, Collas P (2001) Mistargeting of B-type lamins at the end of mitosis: implications on cell survival and regulation of lamins A/C expression. J Cell Biol 153:621–626

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Zaidi SK, Braastad CD, Montecino M, van Wijnen AJ, Choi JY, Stein JL, Lian JB, Javed A (2003) Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13:584–592

    Article  PubMed  CAS  Google Scholar 

  • Stein GS, Stein JL, Lian JB, Van Wijnen AJ, Montecino M, Javed A, Zaidi SK, Young D, Choi JY, Pockwinse S (2004) Nuclear microenvironments: an architectural platform for the convergence and integration of transcriptional regulatory signals. Eur J Histochem 48:65–76

    PubMed  CAS  Google Scholar 

  • Stromme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SM, Bruyere H, Lutcherath V, Gedeon AK, Wallace RH, Scheffer IE, Turner G, Partington M, Frints SG, Fryns JP, Sutherland GR, Mulley JC, Gecz J (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30:441–445

    Article  PubMed  CAS  Google Scholar 

  • Su RC, Brown KE, Saaber S, Fisher AG, Merkenschlager M, Smale ST (2004) Centromeric repositioning of coreceptor loci predicts their stable silencing and the CD4/CD8 lineage choice. J Exp Med 200:1437–1444

    Article  PubMed  CAS  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  PubMed  CAS  Google Scholar 

  • Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20:2867–2874

    Article  PubMed  CAS  Google Scholar 

  • Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190

    PubMed  CAS  Google Scholar 

  • Tajbakhsh J, Luz H, Bornfleth H, Lampel S, Cremer C, Lichter P (2000) Spatial distribution of GC- and AT-rich DNA sequences within human chromosome territories. Exp Cell Res 255:229–237

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Muller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002a) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T (2002b) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45

    PubMed  CAS  Google Scholar 

  • Tanabe H, Kupper K, Ishida T, Neusser M, Mizusawa H (2005) Inter- and intra-specific gene-density-correlated radial chromosome territory arrangements are conserved in Old World monkeys. Cytogenet Genome Res 108:255–261

    Article  PubMed  CAS  Google Scholar 

  • Thompson M, Haeusler RA, Good PD, Engelke DR (2003) Nucleolar clustering of dispersed tRNA genes. Science 302:1399–1401

    Article  PubMed  CAS  Google Scholar 

  • Thomson I, Gilchrist S, Bickmore WA, Chubb JR (2004) The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 14:166–172

    Article  PubMed  CAS  Google Scholar 

  • van Driel R, Humbel B, de Jong L (1991) The nucleus: a black box being opened. J Cell Biochem 47:311–316

    Article  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 101:10428–10433

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147:13–24

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, Van Der Kraan I, Enserink JM, Mone MJ, Manders EM, Van Driel R (2002) Large-scale chromatin organization and the localization of proteins involved in gene expression in human cells. J Histochem Cytochem 50:1303–1312

    PubMed  CAS  Google Scholar 

  • Verschure PJ, van der Kraan I, Manders EM, Hoogstraten D, Houtsmuller AB, van Driel R (2003) Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 4:861–866

    Article  PubMed  CAS  Google Scholar 

  • Visintin R, Amon A (2000) The nucleolus: the magician's hat for cell cycle tricks. Curr Opin Cell Biol 12:752

    Article  PubMed  CAS  Google Scholar 

  • Visser AE, Aten JA (1999) Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei. J Cell Sci 112:3353–3360

    PubMed  CAS  Google Scholar 

  • Visser AE, Eils R, Jauch A, Little G, Bakker PJ, Cremer T, Aten JA (1998) Spatial distributions of early and late replicating chromatin in interphase chromosome territories. Exp Cell Res 243:398–407

    Article  PubMed  CAS  Google Scholar 

  • Vlcek S, Just H, Dechat T, Foisner R (1999) Functional diversity of LAP2alpha and LAP2beta in postmitotic chromosome association is caused by an alpha-specific nuclear targeting domain. EMBO J 18:6370–6384

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576

    PubMed  CAS  Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160:685–697

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Samarabandu J, Devdhar RS, Siegel AJ, Acharya R, Berezney R (1998) Segregation of transcription and replication sites into higher order domains. Science 281:1502–1506

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Somanathan S, Samarabandu J, Berezney R (1999) Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 146:543–558

    Article  PubMed  CAS  Google Scholar 

  • Weipoltshammer K, Schofer C, Almeder M, Philimonenko VV, Frei K, Wachtler F, Hozak P (1999) Intranuclear anchoring of repetitive DNA sequences: centromeres, telomeres, and ribosomal DNA. J Cell Biol 147:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Williams RR (2003) Transcription and the territory: the ins and outs of gene positioning. Trends Genet 19:298–302

    Article  PubMed  CAS  Google Scholar 

  • Williams RR, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272:163–175

    Article  PubMed  CAS  Google Scholar 

  • Worman HJ, Yuan J, Blobel G, Georgatos SD (1988) A lamin B receptor in the nuclear envelope. Proc Natl Acad Sci U S A 85:8531–8534

    PubMed  CAS  Google Scholar 

  • Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271:14653–14656

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Callebaut I, Pezhman A, Courvalin JC, Worman HJ (1997) Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J Biol Chem 272:14983–14989

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114:4485–4498

    PubMed  CAS  Google Scholar 

  • Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118:673–687

    Article  PubMed  CAS  Google Scholar 

  • Zimek A, Stick R, Weber K (2003) Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J Cell Sci 116:2295–2302

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247:176–188

    Article  PubMed  CAS  Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1:93–106

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna M. Bridger.

Additional information

Communicated by D. Griffin

Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, H.A., Bridger, J.M. The genome and the nucleus: a marriage made by evolution. Chromosoma 114, 212–229 (2005). https://doi.org/10.1007/s00412-005-0016-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0016-6

Keywords

Navigation