Skip to main content
Log in

Increased missegregation and chromosome loss with decreasing chromosome size in vertebrate cells

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosome engineering has allowed the generation of an extensive and well-defined series of linear human X centromere-based minichromosomes, which has been used to investigate the influence of size and structure on chromosome segregation in vertebrate cells. A clear relationship between overall chromosome size and mitotic stability was detected, with decreasing size associated with increasing loss rates. In chicken DT40, the lower size limit for prolonged mitotic stability is approximately 550 kb: at 450 kb, there was a dramatic increase in chromosome loss, while structures of approximately 200 kb could not be recovered. In human HT1080 cells, the size threshold for mitotic stability is approximately 1.6 Mb. Minichromosomes of 0.55–1.0 Mb can be recovered, but display high loss rates. However, all minichromosomes examined exhibited more segregation errors than normal chromosomes in HT1080 cells. This error rate increases with decreased size and correlates with reduced levels of CENP-A and Aurora B. In mouse LA-9 and Indian muntjac FM7 cells, the size requirements for mitotic stability are much greater. In mouse, a human 2.7-Mb minichromosome is rarely able to propagate a kinetochore and behaves acentrically. In Indian muntjac, CENP-C associates with the human minichromosome, but the mitotic apparatus appears unable to handle its segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alazami A, Mejia JE, Larin Monaco Z (2004) Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable. Genomics 83:844–851

    Article  PubMed  CAS  Google Scholar 

  • Andrews PD, Ovechkina Y, Morrice N et al (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Yamamura K-i (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    Article  PubMed  CAS  Google Scholar 

  • Basu J, Willard HF (2005) Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol Med 11:251–258

    Article  PubMed  CAS  Google Scholar 

  • Burns EM, Christopoulou L, Corish P, Tyler-Smith C (1999) Quantitative measurement of mammalian chromosome mitotic loss rates using the green fluorescent protein. J Cell Sci 112:2705–2714

    PubMed  CAS  Google Scholar 

  • Conese M, Auriche C, Ascenzioni F (2004) Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther 11:1735–1741

    Article  PubMed  CAS  Google Scholar 

  • Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Dieken ES, Fournier REK (1996) Homologous modification of human chromosomal genes in chicken B-cell × human microcell hybrids. Methods 9(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Dieken ES, Epner EM, Fiering S, Fournier REK, Groudine M (1996) Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nat Genet 12:174–182

    Article  PubMed  CAS  Google Scholar 

  • Dunleavy E, Pidoux A, Allshire RC (2005) Centromeric chromatin makes its mark. Trends Biochem Sci 30:172–175

    Article  PubMed  CAS  Google Scholar 

  • Farr CJ, Stevanovic M, Thomson EJ, Goodfellow PN, Cooke HJ (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2:275–282

    Article  PubMed  CAS  Google Scholar 

  • Farr CJ, Bayne RAL, Kipling D, Mills W, Critcher R, Cooke HJ (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14:5444–5454

    PubMed  CAS  Google Scholar 

  • Featherstone T, Huxley C (1993) Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics 17:267–278

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T (2004) Centromere DNA, proteins and kinetochore assembly in vertebrate cells. Chromosome Res 12:557–567

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Pendon C, Morris J, Brown W (1999) CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J 18:4196–4209

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Mikami Y, Nishihashi A et al (2001) CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20:4603–4617

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M et al (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Warburton PE, Farr CJ (2002) Chromosome engineering: prospects for gene therapy. Gene Ther 9:713–718

    Article  PubMed  CAS  Google Scholar 

  • Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505

    Article  PubMed  CAS  Google Scholar 

  • Hauf S, Cole RW, LaTerra S et al (2003) The small molecule hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–294

    Article  PubMed  CAS  Google Scholar 

  • He D, Brinkley BR (1996) Structure and dynamic organization of centromeres/prekinetochores in the nucleus of mammalian cells. J Cell Sci 109:2693–2704

    PubMed  CAS  Google Scholar 

  • Howman AE, Fowler KJ, Newson AJ et al (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 97:1148–1153

    Article  PubMed  CAS  Google Scholar 

  • Ikeno M, Grimes B, Okazaki T et al (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16:431–439

    Article  PubMed  CAS  Google Scholar 

  • Irvine DV, Amor DJ, Perry J et al (2004) Chromosome size and origin as determinants of the level of CENP-A incorporation into human chromosomes. Chromosome Res 12:805–815

    Article  PubMed  CAS  Google Scholar 

  • Kazuki Y, Shinohara T, Tomizuka K et al (2001) Germline transmission of a transferred human chromosome 21 fragment in transchromosomal mice. J Hum Genet 46:600–603

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Tomizuka K, Shinohara T et al (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nature Biotechnol 18:1086–1090

    Article  CAS  Google Scholar 

  • Lee JY, Koi M, Stanbridge EJ, Oshimura M, Kumamoto AT, Feinberg AP (1994) Simple purification of human chromosomes to homogeneity using muntjac hybrid cells. Nat Genet 7:29–33

    Article  PubMed  CAS  Google Scholar 

  • Loupart M-L, Shen MH, Smith A (1998) Differential stability of a human mini-chromosome in mouse cell lines. Chromosoma 107:255–259

    Article  PubMed  CAS  Google Scholar 

  • Mellone BG, Allshire RC (2003) Stretching it: putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13:191–198

    Article  PubMed  CAS  Google Scholar 

  • Mills W, Critcher R, Lee C, Farr CJ (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 8:751–761

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Schultes NP, Szostak JW (1986) Chromosome length controls mitotic segregation in yeast. Cell 45:529–536

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Yamamura K-i, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  PubMed  CAS  Google Scholar 

  • Pichugin AM, Galkina SA, Potekhin AA, Punina EO, Rautian MS, Rodionov AV (2001) Determination of the minimum size of Gallus gallus domesticus chicken microchromosome by a pulse electrophoresis method. Genetika 37:657–660

    PubMed  CAS  Google Scholar 

  • Regnier V, Novelli J, Fukagawa T, Vagnarelli P, Brown W (2003) Characterization of chicken CENP-A and comparative sequence analysis of vertebrate centromere-specific histone H3-like proteins. Gene 316:39–46

    Article  PubMed  CAS  Google Scholar 

  • Rudd MK, Mays RW, Schwatz S, Willard HF (2003) Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of non-disjunction and anaphase lag. Mol Cell Biol 23:7689–7697

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA et al (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125

    Article  PubMed  CAS  Google Scholar 

  • Sauer B, Henderson N (1990) Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol 2:441–449

    PubMed  CAS  Google Scholar 

  • Schafer AJ, Farr CJ (1998) Somatic cell hybrid approaches to mapping. In: Spurr NK, Young BD, Bryant SP (eds) The ICRF handbook of genome analysis. Blackwell, Oxford, pp 321–365

    Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  PubMed  CAS  Google Scholar 

  • Shen MH, Mee PJ, Nichols J et al (2000) A structurally defined mini-chromosome vector for the mouse germ line. Curr Biol 10:31–34

    Article  PubMed  CAS  Google Scholar 

  • Shen MH, Yang JW, Pendon C, Brown WR (2001) The accuracy of segregation of human mini-chromosomes varies in different vertebrate cell lines, correlates with the extent of centromere formation and provides evidence for a trans-acting centromere maintenance activity. Chromosoma 109:524–535

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T, Tomizuka K, Takehara S et al (2000) Stability of transferred human chromosome fragments in cultured cells and in mice. Chromosome Res 8:713–725

    Article  PubMed  CAS  Google Scholar 

  • Spence JM, Critcher R, Ebersole TA et al (2002) Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 21:5269–5280

    Article  PubMed  CAS  Google Scholar 

  • Spence JM, Fournier REK, Oshimura M, Regnier V, Farr CJ (2005) Topoisomerase II cleavage activity within the D11Z1 and DXZ1 alpha-satellite arrays. Chromosome Res 13(6):637–648

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Warburton PE (1999) Studying the progression of vertebrate chromosomes through mitosis by immunofluorescence and FISH. In: Bickmore WA (ed) Chromosome structural analysis: a practical approach. Oxford University Press, Oxford, pp 82–101

    Google Scholar 

  • Taylor SS, Larin Z, Tyler-Smith C (1996) Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells. Chromosoma 105:70–81

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Yoshida H, Uejima H et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Shinohara T, Yoshida H et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727

    Article  PubMed  CAS  Google Scholar 

  • Valdivia MM, Figueroa J, Iglesias C, Ortiz M (1998) A novel centromere monospecific serum to a human autoepitope on the histone H3-like protein CENP-A. FEBS Lett 422:5–9

    Article  PubMed  CAS  Google Scholar 

  • Voet T, Vermeesch J, Carens A et al (2001) Efficient male and female germline transmission of a human chromosomal vector in mice. Genome Res 11:124–136

    Article  PubMed  CAS  Google Scholar 

  • Voet T, Schoenmakers E, Carpentier S, Labaere C, Marynen P (2003) Controlled transgene dosage and PAC-mediated transgenesis in mice using a chromosomal vector. Genomics 82:596–605

    Article  PubMed  CAS  Google Scholar 

  • Wong LH, Saffery R, Anderson MA, Earle E, Quach JM, Stafford AJ, Fowler KJ, Choo KH (2005) Analysis of mitotic and expression properties of human neocentromere-based transchromosomes in mice. J Biol Chem 280(5):3954–3962

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Pendon C, Yang J, Haywood N, Chand A, Brown WRA (2000) Human mini-chromosomes with minimal centromeres. Hum Mol Genet 9:1891–1902

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Yi X, Wright WE, Shay JW (2002) Human telomerase can immortalize Indian muntjac cells. Exp Cell Res 281:63–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the following for their generous gifts of antibodies: Bill Earnshaw (anti-human CENP-C); Manuel Valdivia (anti-human CENP-A); Paul Kalitsis and Andy Choo (anti-mouse CENP-C and -A); Vicianne Regnier (anti-chicken CENP-A) and Tats Fukagawa (anti-chicken CENP-H and -C). For cell lines, we thank Andrew Feinberg (FM7), Jerry Shay (IndianMuntert) and Bill Colledge (CCB mouse ES cells). We thank Chris Tyler-Smith for the pGFP-PEST:IRES:Zeo reporter cassette, and Andy Jessop and Nigel Miller for their help with flow cytometry. This work was funded by project grants from the Biotechnology and Biological Sciences Research Council (BBSRC 8/GTH12583/4), the EC Framework 5 (QLK3-CT-2002-02119) and, in its early stages, by a Medical Research Council Senior Research fellowship to CJF. We thank the BBSRC for the flow cytometer research equipment initiative grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine J. Farr.

Additional information

Communicated by H. Masumoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spence, J.M., Mills, W., Mann, K. et al. Increased missegregation and chromosome loss with decreasing chromosome size in vertebrate cells. Chromosoma 115, 60–74 (2006). https://doi.org/10.1007/s00412-005-0032-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-005-0032-6

Keywords

Navigation