Skip to main content
Log in

Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Among his many contributions to the field of chromosome structure and dynamics, J. Herbert Taylor showed that eukaryotic cells have many more potential replication origins than they use, which they can recruit when replication forks are slowed to complete S-phase in a timely fashion. Thirty years later, his findings raise an important but largely overlooked paradox. Although new data have confirmed his results, a larger body of data has revealed that slowing replication forks activates an S-phase checkpoint cascade that inhibits initiation from unfired origins until the stress is relieved. In this paper, in celebration of Taylor’s work published in Chromosoma 30 years ago, I draw attention to this paradox and offer some plausible models to explain how replication stress can both inhibit and recruit new origins. I hope that this essay will stimulate further experimentation into the basis of Taylor’s original findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385–394

    Article  PubMed  CAS  Google Scholar 

  • Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients. Development 133:385–394

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal AB, Kriegstein HJ, Hogness DS (1974) The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harbor Symp Quant Biol 38:205–223

    PubMed  CAS  Google Scholar 

  • Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–1052

    Article  PubMed  CAS  Google Scholar 

  • Cobb JA, Shimada K, Gasser SM (2004) Redundancy, insult-specific sensors and thresholds: unlocking the S-phase checkpoint response. Curr Opin Genet Dev 14:292–300

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova DS, Gilbert DM (2000) Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nat Cell Biol 2:686–694

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2004) In search of the holy replicator. Nat Rev Mol Cell Biol 5:848–855

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2005) Origins go plastic. Mol Cell 20:657–658

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM, Gasser SM (2006) Nuclear structure and DNA replication. In: DePamphilis ML (ed) DNA replication and human disease. Cold Spring Harbor, Cold Spring Harbor, New York

    Google Scholar 

  • Kurek MP, Taylor JH (1977) Replication of DNA in mammalian chromosomes. IV. Partial characterization of DNA fragments released from replicating DNA of CHO cells. Exp Cell Res 104:7–14

    Article  PubMed  CAS  Google Scholar 

  • Lengronne A, Schwob E (2002) The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 9:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Liu JS, Kuo SR, Melendy T (2003) Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents. Mutat Res 532:215–226

    PubMed  CAS  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    Article  PubMed  CAS  Google Scholar 

  • Luciani MG, Oehlmann M, Blow JJ (2004) Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus. J Cell Sci 117:6019–6030

    Article  PubMed  CAS  Google Scholar 

  • Marheineke K, Hyrien O (2004) Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J Biol Chem 279:28071–28081

    Article  PubMed  CAS  Google Scholar 

  • Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279:20067–20075

    Article  PubMed  CAS  Google Scholar 

  • Nedelcheva-Veleva MN, Krastev DB, Stoynov SS (2006) Coordination of DNA synthesis and replicative unwinding by the S-phase checkpoint pathways. Nucleic Acids Res 34:4138–4146

    Article  PubMed  CAS  Google Scholar 

  • Norio P (2006) DNA replication: the unbearable lightness of origins. EMBO Rep 7:779–781

    Article  PubMed  CAS  Google Scholar 

  • Norio P, Kosiyatrakul S, Yang Q, Guan Z, Brown NM, Thomas S, Riblet R, Schildkraut CL (2005) Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 20:575–587

    Article  PubMed  CAS  Google Scholar 

  • Pasero P, Shimada K, Duncker BP (2003) Multiple roles of replication forks in S phase checkpoints: sensors, effectors and targets. Cell Cycle 2:568–572

    PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Ramanathan S, Okuno Y, Kumagai C, Shaikh SS, Gilbert DM (2006) The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol Cell Biol 26:1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SL, Bernstein BE (2002) Signaling network model of chromatin. Cell 111:771–778

    Article  PubMed  CAS  Google Scholar 

  • Shimada K, Pasero P, Gasser SM (2002) ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev 16:3236–3252

    Article  PubMed  CAS  Google Scholar 

  • Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25:3553–3562

    Article  PubMed  CAS  Google Scholar 

  • Taylor JH (1953) Intracellular localization of labeled nucleic acid determined by autoradiographs. Science 118:555–557

    Article  PubMed  CAS  Google Scholar 

  • Taylor JH (1977) Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma 62:291–300

    Article  PubMed  CAS  Google Scholar 

  • Taylor JH, Hozier JC (1976) Evidence for a four micron replication unit in CHO cells. Chromosoma 57:341–350

    Article  PubMed  CAS  Google Scholar 

  • Taylor JH, Adams AG, Kurek MP (1973) Replication of DNA in mammalian chromosomes. II. Kinetics of 3H-thymidine incorporation and the isolation and partial characterization of labeled subunits at the growing point. Chromosoma 41:361–384

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme DR (1973) Replicating DNA molecules from eggs of Drosophila melanogaster. Chromosoma 43:1–18

    Article  PubMed  CAS  Google Scholar 

  • Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173:673–683

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank J. Huberman, J. Blow, P. Pasero, and M. Debatisse for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Gilbert.

Additional information

Communicated by G. Almouzni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, D.M. Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 116, 341–347 (2007). https://doi.org/10.1007/s00412-007-0105-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0105-9

Keywords

Navigation