Skip to main content
Log in

Mitochondrial DNA control region diversity in hairs and body fluids of monozygotic triplets

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Length heteroplasmy of the homopolymeric cytosine stretch in the hypervariable region II of the mitochondrial D-loop was investigated in blood, buccal cells and hair shafts of monozygotic triplets. The proportions of length heteroplasmy were determined by cloning and sequencing of multiple independent clones. Blood and buccal cells showed an accumulation of molecules with one and two insertions of cytosine residues in relation to the Cambridge Reference Sequence (CRS). The results did not show statistically significant differences between blood and buccal cells of one and the same individual and also not between the three monozygotic brothers. In the hair samples a loss of cytosine residues was established in all three monozygotic individuals compared to blood and buccal cells, suggesting that this must be a regular process. Furthermore, the hair shaft samples showed significant differences between the frequencies of 7, 8 or 9 Cs in the poly C region comparing the three individuals (p<0.008) and in addition there were highly significant differences (p<0.0001) when comparing the results for six different hairs of each individual separately. From these results it can be assumed that besides a common genetic bottleneck during embryonic development, a post-embryonic bottleneck seems to exist in each hair follicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso A, Salas A, Albarran C et al. (2002) Results of the 1999–2000 collaborative exercise and proficiency testing program on mitochondrial DNA of the GEP-ISFG: an inter-laboratory study of the observed variability in the heteroplasmy level of hair from the same donor. Forensic Sci Int 125:1–7

    CAS  PubMed  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG et al. (1981) Sequence and organisation of the human mitochondrial genome. Nature 290:457–464

    CAS  PubMed  Google Scholar 

  • Bendall KE, Sykes BC (1995) Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. Am J Hum Genet 57:248–256

    CAS  PubMed  Google Scholar 

  • Bendall KE, Macaulay VA, Baker JR, Sykes BC (1996) Heteroplasmic point mutations in the human mtDNA control region. Am J Hum Genet 59:1276–1287

    CAS  PubMed  Google Scholar 

  • Bendall KE, Macaulay VA, Sykes BC (1997) Variable levels of a heteroplasmic point mutation in individual hair roots. Am J Hum Genet 61:1303–1308

    CAS  PubMed  Google Scholar 

  • Calloway CD, Reynolds RL, Herrin GL Jr, Anderson WW (2000) The frequency of heteroplasmy in the HVII region differs across tissue types and increases with age. Am J Hum Genet 66:1384–1397

    CAS  PubMed  Google Scholar 

  • Carracedo A, Bär W, Lincoln P et al. (2000) DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Forensic Sci Int 110:79–85

    CAS  PubMed  Google Scholar 

  • Cortopassi GA, Wong A (1999) Mitochondria in organismal aging and degeneration. Biochim Biophys Acta 1410:183–193

    CAS  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 4:145–147

    Google Scholar 

  • Hauswirth WW, Clayton DA (1985) Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res 13:8093–8104

    CAS  PubMed  Google Scholar 

  • Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A 79:4686–4690

    CAS  PubMed  Google Scholar 

  • Hauswirth WW, Van de Walle MJ, Laipis PJ, Olivo PD (1984) Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell 37:1001–1007

    CAS  PubMed  Google Scholar 

  • Hellmann A, Rohleder U, Schmitter H, Wittig M (2001) STR typing of human telogen hairs—a new approach. Int J Legal Med 114:269–273

    CAS  PubMed  Google Scholar 

  • Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis—validation and use for forensic casework. Forensic Sci Rev 11:21–50

    Google Scholar 

  • Holland MM, Fisher DL, Roby RK, Ruderman J, Bryson C, Weedn VW (1995) Mitochondrial DNA sequence analysis of human remains. Crime Lab Digest 22:109–115

    Google Scholar 

  • Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12:417–420

    CAS  PubMed  Google Scholar 

  • Lindner G, Botchkarev VA, Botchkareva NV, Ling G, Van der Veen C, Paus R (1997) Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol 151:1601–1617

    CAS  PubMed  Google Scholar 

  • Lutz S, Weisser HJ, Heizmann J, Pollak S (2000) Mitochondrial heteroplasmy among maternally related individuals. Int J Legal Med 113:155–161

    CAS  PubMed  Google Scholar 

  • Marchington DR, Hartshorne GM, Barlow D, Poulton J (1997) Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck. Am J Hum Genet 60:408–416

    CAS  PubMed  Google Scholar 

  • Parson W, Parsons TJ, Scheithauer R, Holland MM (1998) Population data for 101 Austrian Caucasian mitochondrial DNA d-loop sequences: application of mtDNA sequence analysis to a forensic case. Int J Legal Med 111:124–132

    CAS  PubMed  Google Scholar 

  • Paus R, Cotsarelis G (1999) The biology of hair follicles. N Engl J Med 341:491–497

    CAS  PubMed  Google Scholar 

  • Pfeiffer H, Brinkmann B, Hühne J, Rolf B, Morris AA, Steighner R, Holland MM, Forster P (1999) Expanding the forensic German mitochondrial DNA control region database: genetic diversity as a function of sample size and microgeography. Int J Legal Med 112:291–298

    CAS  PubMed  Google Scholar 

  • Stewart JEB, Fisher CL, Aagaard PJ et al. (2001) Length variation in HV2 of the human mitochondrial DNA control region. J Forensic Sci 46:862–870

    CAS  PubMed  Google Scholar 

  • Sullivan KM, Alliston-Greiner R, Archampong FIA, Piercy R, Tully G, Gill P, Lloyd-Davies C (1996) A single difference in mtDNA control region sequence observed between hair shaft and reference samples from a single donor. Proceedings from the Seventh International Symposium on Human Identification. Promega Corporation, Madison, pp 126–130

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Wilson MR, Polanskey D, Replogle J, DiZinno JA, Budowle B (1997) A family exhibiting heteroplasmy in the human mitochondrial DNA control region reveals both somatic mosaicism and pronounced segregation of mitotypes. Hum Genet 100:167–171

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, H., Lutz-Bonengel, S., Pollak, S. et al. Mitochondrial DNA control region diversity in hairs and body fluids of monozygotic triplets. Int J Legal Med 118, 71–74 (2004). https://doi.org/10.1007/s00414-003-0409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-003-0409-0

Keywords

Navigation