Skip to main content
Log in

Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The brain-derived neurotrophic factor (BDNF) is a potent inhibitor of apoptosis-mediated cell death and neurotoxin-induced degeneration of dopaminergic neurons. There is a growing body of evidence implicating BDNF in the pathogenesis of Parkinson’s disease (PD), suggesting it may eventually be used in the development of neuroprotective therapies for PD. The serum BDNF of 47 PD patients and of 23 control subjects was assessed, and serum BNDF levels were significantly decreased in PD patients when compared with controls (p = 0.046). Interestingly enough, BDNF correlated positively with a longer time span of the disease, as well as with the severity of the PD symptoms and with more advanced stages of the disease. Additionally, higher BDNF levels also correlated with poor balance as assessed by the Berg Balance Scale, more time spent at the Timed Up & Go Test, reduced speed of gait and shorter distance walked during the Six-Minute Walk Test. Our results corroborate the literature regarding the involvement of BDNF in PD. We hypothesize that lower BDNF levels in early stages of the disease may be associated with pathogenic mechanisms of PD. The increase of BDNF levels with the progression of the disease may be a compensatory mechanism in more advanced stages of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Calne D (2005) A definition of Parkinson’s disease. Parkinsonism Relat Disord 11:S39–S40

    Article  PubMed  Google Scholar 

  2. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131

    Article  CAS  PubMed  Google Scholar 

  3. Schindowski K, Belarbi K, Buée L (2008) Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 7:43–56

    Article  CAS  PubMed  Google Scholar 

  4. Ciammola A, Sassone J, Cannella M et al (2007) Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet B Neuropsychiatr Genet 144B:574–577

    Article  CAS  PubMed  Google Scholar 

  5. Howells DW, Porritt MJ, Wong JYF et al (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166:127–135

    Article  CAS  PubMed  Google Scholar 

  6. Parain K, Murer MG, Quiao Y et al (1999) Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport 10:557–561

    Article  CAS  PubMed  Google Scholar 

  7. Mogi M, Togaria A, Kondo T et al (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270:45–48

    Article  CAS  PubMed  Google Scholar 

  8. Knott C, Stern G, Kingsbury A (2002) Elevated glial brain-derived neurotrophic factor in Parkinson’s diseased nigra. Parkinsonism Relat Disord 8:329–341

    Article  CAS  PubMed  Google Scholar 

  9. Zintzaras E, Hadjigeorgiou GM (2005) The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson’s disease: a meta-analysis. J Hum Genet 50:560–566

    Article  CAS  PubMed  Google Scholar 

  10. Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) lntrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15:7810–7820

    CAS  PubMed  Google Scholar 

  11. Mocchetti I, Bachis A, Nosheny RL, Tanda G (2007) Brain-derived neurotrophic factor expression in the substantia nigra does not change after lesions of dopaminergic neurons. Neurotox Res 12:135–143

    Article  CAS  PubMed  Google Scholar 

  12. Trajkovska V, Marcussen AB, Vinberg M et al (2007) Measurements of brain-derived neurotrophic factor: methodological aspects and demographical data. Brain Res Bull 73:143–149

    Article  CAS  PubMed  Google Scholar 

  13. Brucki SMD, Nitrini R, Caramelli P et al (2003) Sugestões para o uso do Mini-Exame do Estado Mental no Brasil. Arq Neuropsiquiatr 61:777–781

    PubMed  Google Scholar 

  14. Silberman CD, Laks J, Capitão CF (2006) Recognizing depression in patients with Parkinson’s disease: accuracy and specificity of two depression rating scale. Arq Neuropsiquiatr 64:407–411

    PubMed  Google Scholar 

  15. Tumas V, Rodrigues GGR, Farias TLA, Crippa JAS (2008) The accuracy of diagnosis of major depression in patients with Parkinson’s disease: A comparative study among the UPDRS, the Geriatric Depression Scale and the Beck Depression Inventory. Arq Neuropsiquiatr 66:152–156

    PubMed  Google Scholar 

  16. Fahn S, Elton R (1987) Unified Parkinson’s Disease Rating Scale. In: Fahn S, Marsden CD, Caine DB, Goldstein M, (eds) Recent developments in Parkinson’s disease, vol 2. Macmillan Health Care information, Florham Park, pp 153–163, 293–304

  17. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    CAS  PubMed  Google Scholar 

  18. Qutubuddin AA, Pegg PO, Cifu DX et al (2005) Validating the Berg Balance Scale for patients with Parkinson’s disease: a key to rehabilitation evaluation. Arch Phys Med Rehabil 86:789–792

    Article  PubMed  Google Scholar 

  19. Podsiadlo D, Richardson S (1991) The timed “Up and Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148

    CAS  PubMed  Google Scholar 

  20. Green J, Forster A, Young J (2002) Reliability of gait speed measured by a timed walking test in patients one year after stroke. Clin Rehabil 16:306–314

    Article  PubMed  Google Scholar 

  21. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six minute walk test. Am J Resp Crit Care Med 166:111–117

    Google Scholar 

  22. Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25:6251–6259

    Article  CAS  PubMed  Google Scholar 

  23. Porritt MJ, Batchelor PE, Howells DW (2005) Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 192:226–234

    Article  CAS  PubMed  Google Scholar 

  24. Yasutake C, Kuroda K, Yanagawa T et al (2006) Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer’s disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 256:402–406

    Article  PubMed  Google Scholar 

  25. Laske C, Stransky E, Leyhe T et al (2006) Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm 113:1217–1224

    Article  CAS  PubMed  Google Scholar 

  26. Gama CS, Andreazza AC, Kunz M et al (2007) Serum levels of brain-derived neurotrophic factor in patients with schizophrenia and bipolar disorder. Neurosci Lett 420:45–48

    Article  CAS  PubMed  Google Scholar 

  27. Reis HJ, Nicolato R, Barbosa IG et al (2008) Increased serum levels of brain-derived neurotrophic factor in chronic institutionalized patients with schizophrenia. Neurosci Lett 439:157–159

    Article  CAS  PubMed  Google Scholar 

  28. Buckley PF, Pillai A, Evans D et al (2007) Brain derived neurotropic factor in first-episode psychosis. Schizophr Res 91:1–5

    Article  PubMed  Google Scholar 

  29. Sandyk R, Kay SR (1990) The relationship of negative schizophrenia to parkinsonism. Int J Neurosci 55:1–59

    Article  CAS  PubMed  Google Scholar 

  30. Chatterjee A, Chakos M, Koreen A et al (1995) Prevalence and clinical correlates of extrapyramidal signs and spontaneous dyskinesia in never-medicated schizophrenic patients. Am J Psychiatry 152:1724–1729

    CAS  PubMed  Google Scholar 

  31. Yasuhara T, Shingo T, Date I (2007) Glial cell line-derived neurotrophic factor (GDNF) therapy for Parkinson’s disease. Acta Med Okayama 61:51–56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Rede Instituto Brasileiro de Neurociência (IBN Net/Finep), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Lúcio Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalzo, P., Kümmer, A., Bretas, T.L. et al. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 257, 540–545 (2010). https://doi.org/10.1007/s00415-009-5357-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5357-2

Keywords

Navigation