Skip to main content
Log in

Neurorehabilitation of stroke

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Despite ongoing improvements in the acute treatment of cerebrovascular diseases and organization of stroke services, many stroke survivors are in need of neurorehabilitation, as more than two-thirds show persisting neurologic deficits. While early elements of neurorehabilitation are already taking place on the stroke unit, after the acute treatment, the patient with relevant neurologic deficits usually takes part in an organized inpatient multidisciplinary rehabilitation program and eventually continues with therapies in an ambulatory setting afterwards. A specialized multidisciplinary neurorehabilitation team with structured organization and processes provides a multimodal, intense treatment program for stroke patients which is adapted in detail to the individual goals of rehabilitation. There are many parallels between postlesional neuroplasticity (relearning) and learning in the development of individuals as well as task learning of healthy persons. One key principle of neurorehabilitation is the repetitive creation of specific learning situations to promote mechanisms of neural plasticity in stroke recovery. There is evidence of achieving a better outcome of neurorehabilitation with early initiation of treatment, high intensity, with specific goals and active therapies, and the coordinated work and multimodality of a specialized team. In this context, interdisciplinary goal-setting and regular assessments of the patient are important. Furthermore, several further potential enhancers of neural plasticity, e.g., peripheral and brain stimulation techniques, pharmacological augmentation, and use of robotics, are under evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warlow C, Sudlow C, Dennis M, Wardlaw J, Sandercock P (2003) Stroke. Lancet 362:1211–1224

    Article  PubMed  Google Scholar 

  2. Duncan PW, Zorowitz R, Bates B et al (2005) Management of adult stroke rehabilitation care: a clinical practice guideline. Stroke 36:e100–e143

    Article  PubMed  Google Scholar 

  3. Cajal R (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London

    Google Scholar 

  4. Foerster O (1936) Übungstherapie. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, vol 8. Allgemeine Neurologie, pp 316–414

  5. Kesselring J (2001) Neurorehabilitation: a bridge between basic science and clinical practice. Eur J Neurol 8:221–225

    Article  PubMed  CAS  Google Scholar 

  6. Hebb DO (1949) The organisation of behavior: a neuropsychological approach. Wiley, New York

    Google Scholar 

  7. Møller A (2006) Basis for neural plasticity. In: Møller AR (ed) Neural plasticity and disorders of the nervous system. Cambridge University Press, Cambridge, pp 7–32

    Chapter  Google Scholar 

  8. Duffau H (2006) Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 13:885–897

    Article  PubMed  Google Scholar 

  9. Carmichael ST (2010) Molecular mechanisms of neural repair after stroke. In: Cramer SC, Nudo RJ (eds) Brain repair after stroke. Cambridge University Press, Cambridge, pp 11–21

    Chapter  Google Scholar 

  10. Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16:638–644

    Article  PubMed  CAS  Google Scholar 

  11. Nudo RJ, Milliken GW (1996) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75:2144–2149

    PubMed  CAS  Google Scholar 

  12. Ward NS (2007) Future perspectives in functional neuroimaging in stroke recovery. Eura Medicophys 43:285–294

    PubMed  CAS  Google Scholar 

  13. Ward NS, Cohen LG (2004) Mechanisms underlying recovery of motor function after stroke. Arch Neurol 61:1844–1848

    Article  PubMed  Google Scholar 

  14. Liepert J, Graef S, Uhde I, Leidner O, Weiller C (2000) Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand 101:321–326

    Article  PubMed  CAS  Google Scholar 

  15. Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M (2005) Vicarious function within the human primary motor cortex? a longitudinal fMRI stroke study. Brain 128:1122–1138

    Article  PubMed  Google Scholar 

  16. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126:2476–2496

    Article  PubMed  CAS  Google Scholar 

  17. Shimizu T, Hosaki A, Hino T et al (2002) Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125:1896–1907

    Article  PubMed  Google Scholar 

  18. Duque J, Mazzocchio R, Dambrosia J, Murase N, Olivier E, Cohen LG (2005) Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb Cortex 15:588–593

    Article  PubMed  CAS  Google Scholar 

  19. Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    Article  PubMed  Google Scholar 

  20. Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S (2005) Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol 193:291–311

    Article  PubMed  CAS  Google Scholar 

  21. Witte OW (1998) Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training. Curr Opin Neurol 11:655–662

    Article  PubMed  CAS  Google Scholar 

  22. Biernaskie J, Chernenko G, Corbett D (2004) Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 24:1245–1254

    Article  PubMed  CAS  Google Scholar 

  23. Carmichael ST, Wei L, Rovainen CM, Woolsey TA (2001) New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis 8:910–922

    Article  PubMed  CAS  Google Scholar 

  24. Wall PD, Egger MD (1971) Formation of new connexions in adult rat brains after partial deafferentation. Nature 232:542–545

    Article  PubMed  CAS  Google Scholar 

  25. Schaechter JD, Perdue KL, Wang R (2008) Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage 39:1370–1382

    Article  PubMed  Google Scholar 

  26. Crofts JJ, Higham DJ, Bosnell R et al (2011) Network analysis detects changes in the contralesional hemisphere following stroke. Neuroimage 54:161–169

    Article  PubMed  CAS  Google Scholar 

  27. Von Monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. J.F.Bergmann, Wiesbaden

  28. Johansson BB, Ohlsson AL (1996) Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol 139:322–327

    Article  PubMed  CAS  Google Scholar 

  29. Grefkes C, Fink GR (2011) Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134:1264–1276

    Article  PubMed  Google Scholar 

  30. Nyffeler T, Cazzoli D, Wurtz P et al (2008) Neglect-like visual exploration behaviour after theta burst transcranial magnetic stimulation of the right posterior parietal cortex. Eur J Neurosci 27:1809–1813

    Article  PubMed  Google Scholar 

  31. Shindo K, Sugiyama K, Huabao L, Nishijima K, Kondo T, Izumi S (2006) Long-term effect of low-frequency repetitive transcranial magnetic stimulation over the unaffected posterior parietal cortex in patients with unilateral spatial neglect. J Rehabil Med 38:65–67

    Article  PubMed  Google Scholar 

  32. Talelli P, Greenwood RJ, Rothwell JC (2007) Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol 118:333–342

    Article  PubMed  CAS  Google Scholar 

  33. Ward NS (2005) Neural plasticity and recovery of function. Prog Brain Res 150:527–535

    Article  PubMed  Google Scholar 

  34. Harris-Love ML, Cohen LG (2006) Noninvasive cortical stimulation in neurorehabilitation: a review. Arch Phys Med Rehabil 87:S84–S93

    Article  PubMed  Google Scholar 

  35. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  PubMed  CAS  Google Scholar 

  36. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  Google Scholar 

  37. Nyffeler T, Muri R (2010) Comment on: safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research, by Rossi et al. (2009). Clin Neurophysiol 121:980

    Article  PubMed  Google Scholar 

  38. Floel A, Nagorsen U, Werhahn KJ et al (2004) Influence of somatosensory input on motor function in patients with chronic stroke. Ann Neurol 56:206–212

    Article  PubMed  Google Scholar 

  39. Pomeroy VM, King L, Pollock A, Baily-Hallam A, Langhorne P (2006) Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev 2:CD003241

    PubMed  Google Scholar 

  40. Berthier ML, Green C, Higueras C, Fernandez I, Hinojosa J, Martin MC (2006) A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology 67:1687–1689

    Article  PubMed  CAS  Google Scholar 

  41. Grade C, Redford B, Chrostowski J, Toussaint L, Blackwell B (1998) Methylphenidate in early poststroke recovery: a double-blind, placebo-controlled study. Arch Phys Med Rehabil 79:1047–1050

    Article  PubMed  CAS  Google Scholar 

  42. Kessler J, Thiel A, Karbe H, Heiss WD (2000) Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 31:2112–2116

    Article  PubMed  CAS  Google Scholar 

  43. Rosser N, Heuschmann P, Wersching H, Breitenstein C, Knecht S, Floel A (2008) Levodopa improves procedural motor learning in chronic stroke patients. Arch Phys Med Rehabil 89:1633–1641

    Article  PubMed  Google Scholar 

  44. Scheidtmann K, Fries W, Muller F, Koenig E (2001) Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 358:787–790

    Article  PubMed  CAS  Google Scholar 

  45. Wang LE, Fink GR, Diekhoff S, Rehme AK, Eickhoff SB, Grefkes C (2011) Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol 69:375–388

    Article  PubMed  Google Scholar 

  46. Chollet F, Tardy J, Albucher JF et al (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10:123–130

    Article  PubMed  CAS  Google Scholar 

  47. Ziemann U, Meintzschel F, Korchounov A, Ilic TV (2006) Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil Neural Repair 20:243–251

    Article  PubMed  Google Scholar 

  48. Engelter ST, Frank M, Lyrer PA, Conzelmann M (2010) Safety of pharmacological augmentation of stroke rehabilitation. Eur Neurol 64:325–330

    Article  PubMed  Google Scholar 

  49. Langhorne P, Duncan P (2001) Does the organization of postacute stroke care really matter? Stroke 32:268–274

    Article  PubMed  CAS  Google Scholar 

  50. Bernhardt J, Dewey H, Thrift A, Donnan G (2004) Inactive and alone: physical activity within the first 14 days of acute stroke unit care. Stroke 35:1005–1009

    Article  PubMed  Google Scholar 

  51. Kesselring J (2001) Neuroscience and clinical practice: a personal postscript. Brain Res Brain Res Rev 36:285–286

    Article  PubMed  CAS  Google Scholar 

  52. Cumming TB, Thrift AG, Collier JM et al (2011) Very early mobilization after stroke fast-tracks return to walking: further results from the phase II AVERT randomized controlled trial. Stroke 42:153–158

    Article  PubMed  Google Scholar 

  53. Humm JL, Kozlowski DA, James DC, Gotts JE, Schallert T (1998) Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res 783:286–292

    Article  PubMed  CAS  Google Scholar 

  54. Risedal A, Zeng J, Johansson BB (1999) Early training may exacerbate brain damage after focal brain ischemia in the rat. J Cereb Blood Flow Metab 19:997–1003

    Article  PubMed  CAS  Google Scholar 

  55. DeBow SB, McKenna JE, Kolb B, Colbourne F (2004) Immediate constraint-induced movement therapy causes local hyperthermia that exacerbates cerebral cortical injury in rats. Can J Physiol Pharmacol 82:231–237

    Article  PubMed  CAS  Google Scholar 

  56. Marin R, Williams A, Hale S et al (2003) The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav 80:167–175

    Article  PubMed  CAS  Google Scholar 

  57. Indredavik B, Bakke F, Slordahl SA, Rokseth R, Haheim LL (1999) Treatment in a combined acute and rehabilitation stroke unit: which aspects are most important? Stroke 30:917–923

    Article  PubMed  CAS  Google Scholar 

  58. Musicco M, Emberti L, Nappi G, Caltagirone C (2003) Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Arch Phys Med Rehabil 84:551–558

    Article  PubMed  Google Scholar 

  59. Maulden SA, Gassaway J, Horn SD, Smout RJ, DeJong G (2005) Timing of initiation of rehabilitation after stroke. Arch Phys Med Rehabil 86:S34–S40

    Article  PubMed  Google Scholar 

  60. Jette DU, Warren RL, Wirtalla C (2005) The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Arch Phys Med Rehabil 86:373–379

    Article  PubMed  Google Scholar 

  61. Graham A (2005) Measurement in stroke: activity and quality of life. In: Barnes M, Dobkin B, Bougousslavsky J (eds) Recovery after stroke. Cambridge University Press, Cambridge, pp 135–160

    Google Scholar 

  62. Albert SJ, Kesselring J (2010) Neurorehabilitation. In: Brainin M, Heiss WD (eds) Textbook of stroke medicine. Cambridge University Press, Cambridge, pp 283–306

    Google Scholar 

  63. Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ (1999) The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 30:2131–2140

    Article  PubMed  CAS  Google Scholar 

  64. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J (2004) The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil 18:833–862

    Article  PubMed  Google Scholar 

  65. da Cunha IT, Lim PA Jr, Qureshy H, Henson H, Monga T, Protas EJ (2002) Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil 83:1258–1265

    Article  PubMed  Google Scholar 

  66. Kosak MC, Reding MJ (2000) Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair 14:13–19

    Article  PubMed  CAS  Google Scholar 

  67. Nilsson L, Carlsson J, Danielsson A et al (2001) Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 15:515–527

    Article  PubMed  CAS  Google Scholar 

  68. Sullivan KJ, Knowlton BJ, Dobkin BH (2002) Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil 83:683–691

    Article  PubMed  Google Scholar 

  69. Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE (1998) A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 29:1122–1128

    Article  PubMed  CAS  Google Scholar 

  70. Wood-Dauphinee S, Kwakkel G (2005) The impact of rehabilitation on stroke outcomes: what is the evidence. In: Barnes M, Dobkin B, Bougousslavsky J (eds) Recovery after stroke. Cambridge University Press, Cambridge, pp 162–188

    Google Scholar 

  71. Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring J (2008) Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 14:231–236

    Article  PubMed  CAS  Google Scholar 

  72. Hidler J, Nichols D, Pelliccio M et al (2009) Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 23:5–13

    PubMed  Google Scholar 

  73. Schwartz I, Sajin A, Fisher I et al (2009) The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PMR 1:516–523

    Google Scholar 

  74. Waldner A, Tomelleri C, Hesse S (2009) Transfer of scientific concepts to clinical practice: recent robot-assisted training studies. Funct Neurol 24:173–177

    PubMed  Google Scholar 

  75. Roerdink M, Lamoth CJ, Kwakkel G, van Wieringen PC, Beek PJ (2007) Gait coordination after stroke: benefits of acoustically paced treadmill walking. Phys Ther 87:1009–1022

    Article  PubMed  Google Scholar 

  76. Mandel AR, Nymark JR, Balmer SJ, Grinnell DM, O’Riain MD (1990) Electromyographic versus rhythmic positional biofeedback in computerized gait retraining with stroke patients. Arch Phys Med Rehabil 71:649–654

    PubMed  CAS  Google Scholar 

  77. Thaut MH, McIntosh GC, Rice RR (1997) Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J Neurol Sci 151:207–212

    Article  PubMed  CAS  Google Scholar 

  78. Taub E, Miller NE, Novack TA et al (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74:347–354

    PubMed  CAS  Google Scholar 

  79. Wolf SL, Winstein CJ, Miller JP et al (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296:2095–2104

    Article  PubMed  CAS  Google Scholar 

  80. Wolf SL, Winstein CJ, Miller JP et al (2008) Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol 7:33–40

    Article  PubMed  Google Scholar 

  81. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8:741–754

    Article  PubMed  Google Scholar 

  82. French B, Thomas L, Leathley M et al (2010) Does repetitive task training improve functional activity after stroke? a cochrane systematic review and meta-analysis. J Rehabil Med 42:9–14

    Article  PubMed  Google Scholar 

  83. Wing K, Lynskey JV, Bosch PR (2008) Whole-body intensive rehabilitation is feasible and effective in chronic stroke survivors: a retrospective data analysis. Top Stroke Rehabil 15:247–255

    Article  PubMed  Google Scholar 

  84. Courbon A, Calmels P, Roche F, Ramas J, Rimaud D, Fayolle-Minon I (2006) Relationship between maximal exercise capacity and walking capacity in adult hemiplegic stroke patients. Am J Phys Med Rehabil 85:436–442

    Article  PubMed  Google Scholar 

  85. Chu KS, Eng JJ, Dawson AS, Harris JE, Ozkaplan A, Gylfadottir S (2004) Water-based exercise for cardiovascular fitness in people with chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil 85:870–874

    Article  PubMed  Google Scholar 

  86. Dean CM, Richards CL, Malouin F (2000) Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Arch Phys Med Rehabil 81:409–417

    Article  PubMed  CAS  Google Scholar 

  87. Rimmer JH, Riley B, Creviston T, Nicola T (2000) Exercise training in a predominantly African-American group of stroke survivors. Med Sci Sports Exerc 32:1990–1996

    Article  PubMed  CAS  Google Scholar 

  88. Badics E, Wittmann A, Rupp M, Stabauer B, Zifko UA (2002) Systematic muscle building exercises in the rehabilitation of stroke patients. NeuroRehabilitation 17:211–214

    PubMed  CAS  Google Scholar 

  89. Lucca LF (2009) Virtual reality and motor rehabilitation of the upper limb after stroke: a generation of progress? J Rehabil Med 41:1003–1100

    Article  PubMed  Google Scholar 

  90. Lucca LF, Castelli E, Sannita WG (2009) An estimated 30–60% of adult patients after stroke do not achieve satisfactory motor recovery of the upper limb despite intensive rehabilitation. J Rehabil Med 41:953

    Article  PubMed  Google Scholar 

  91. Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22:111–121

    PubMed  Google Scholar 

  92. Pignolo L (2009) Robotics in neuro-rehabilitation. J Rehabil Med 41:955–960

    Article  PubMed  Google Scholar 

  93. Merians AS, Jack D, Boian R et al (2002) Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 82:898–915

    PubMed  Google Scholar 

  94. Saposnik G, Teasell R, Mamdani M et al (2010) Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke 41:1477–1484

    Article  PubMed  Google Scholar 

  95. Yong Joo L, Soon Yin T, Xu D et al (2010) A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med 42:437–441

    Article  PubMed  Google Scholar 

  96. Yavuzer G, Selles R, Sezer N et al (2008) Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil 89:393–398

    Article  PubMed  Google Scholar 

  97. Altschuler EL, Wisdom SB, Stone L et al (1999) Rehabilitation of hemiparesis after stroke with a mirror. Lancet 353:2035–2036

    Article  PubMed  CAS  Google Scholar 

  98. Dohle C, Kleiser R, Seitz RJ, Freund HJ (2004) Body scheme gates visual processing. J Neurophysiol 91:2376–2379

    Article  PubMed  Google Scholar 

  99. Liu KP, Chan CC, Wong RS et al (2009) A randomized controlled trial of mental imagery augment generalization of learning in acute poststroke patients. Stroke 40:2222–2225

    Article  PubMed  Google Scholar 

  100. Page SJ, Levine P, Leonard A (2007) Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke 38:1293–1297

    Article  PubMed  Google Scholar 

  101. Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC (2009) Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair 23:382–388

    PubMed  Google Scholar 

  102. Letswaart M, Johnston M, Dijkerman HC et al (2011) Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain 134(Pt 5):1373–1386

    Google Scholar 

  103. Liepert J (2010) Evidence-based therapies for upper extremity dysfunction. Curr Opin Neurol 23:678–682

    Article  PubMed  CAS  Google Scholar 

  104. Ward AB (2008) Spasticity treatment with botulinum toxins. J Neural Transm 115:607–616

    Article  PubMed  CAS  Google Scholar 

  105. Wissel J, Ward AB, Erztgaard P et al (2009) European consensus table on the use of botulinum toxin type A in adult spasticity. J Rehabil Med 41:13–25

    Article  PubMed  Google Scholar 

  106. Barthel G, Meinzer M, Djundja D, Rockstroh B (2008) Intensive language therapy in chronic aphasia: which aspects contribute most? Aphasiology 22:408–421

    Article  Google Scholar 

  107. Bhogal SK, Teasell R, Speechley M (2003) Intensity of aphasia therapy, impact on recovery. Stroke 34:987–993

    Article  PubMed  Google Scholar 

  108. Meinzer M, Djundja D, Barthel G, Elbert T, Rockstroh B (2005) Long-term stability of improved language functions in chronic aphasia after constraint-induced aphasia therapy. Stroke 36:1462–1466

    Article  PubMed  Google Scholar 

  109. Musso M, Weiller C, Kiebel S, Muller SP, Bulau P, Rijntjes M (1999) Training-induced brain plasticity in aphasia. Brain 122(Pt 9):1781–1790

    Article  PubMed  Google Scholar 

  110. Heiss WD, Thiel A, Kessler J, Herholz K (2003) Disturbance and recovery of language function: correlates in PET activation studies. Neuroimage 20(Suppl 1):S42–S49

    Article  PubMed  Google Scholar 

  111. Winhuisen L, Thiel A, Schumacher B et al (2007) The right inferior frontal gyrus and poststroke aphasia: a follow-up investigation. Stroke 38:1286–1292

    Article  PubMed  Google Scholar 

  112. Heiss WD, Thiel A (2006) A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang 98:118–123

    Article  PubMed  Google Scholar 

  113. Saur D, Kreher BW, Schnell S et al (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040

    Article  PubMed  CAS  Google Scholar 

  114. Weiller C, Bormann T, Saur D, Musso M, Rijntjes M (2011) How the ventral pathway got lost—and what its recovery might mean. Brain Lang 118:29–39

    Article  PubMed  Google Scholar 

  115. Weiller C, Musso M, Rijntjes M, Saur D (2009) Please don’t underestimate the ventral pathway in language. Trends Cogn Sci 13(369–370):369–370; 361–370

    Article  PubMed  Google Scholar 

  116. Monti A, Cogiamanian F, Marceglia S et al (2008) Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 79:451–453

    Article  PubMed  CAS  Google Scholar 

  117. Cappa SF (2008) Current to the brain improves word-finding difficulties in aphasic patients. J Neurol Neurosurg Psychiatry 79:364

    Article  PubMed  Google Scholar 

  118. Urban PP, Wicht S, Vukurevic G et al (2001) Dysarthria in acute ischemic stroke: lesion topography, clinicoradiologic correlation, and etiology. Neurology 56:1021–1027

    Article  PubMed  CAS  Google Scholar 

  119. Mann G, Hankey GJ, Cameron D (2000) Swallowing disorders following acute stroke: prevalence and diagnostic accuracy. Cerebrovasc Dis 10:380–386

    Article  PubMed  CAS  Google Scholar 

  120. Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R (2005) Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 36:2756–2763

    Article  PubMed  Google Scholar 

  121. Martino R, Silver F, Teasell R et al (2009) The Toronto Bedside Swallowing Screening Test (TOR-BSST): development and validation of a dysphagia screening tool for patients with stroke. Stroke 40:555–561

    Article  PubMed  Google Scholar 

  122. Trapl M, Enderle P, Nowotny M et al (2007) Dysphagia bedside screening for acute-stroke patients: the Gugging Swallowing Screen. Stroke 38:2948–2952

    Article  PubMed  Google Scholar 

  123. Cappa SF, Benke T, Clarke S, Rossi B, Stemmer B, van Heugten CM (2005) EFNS guidelines on cognitive rehabilitation: report of an EFNS task force. Eur J Neurol 12:665–680

    Article  PubMed  CAS  Google Scholar 

  124. Beis JM, Keller C, Morin N et al (2004) Right spatial neglect after left hemisphere stroke: qualitative and quantitative study. Neurology 63:1600–1605

    Article  PubMed  Google Scholar 

  125. Karnath HO, Christ K, Hartje W (1993) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116(Pt 2):383–396

    Article  PubMed  Google Scholar 

  126. Nyffeler T, Cazzoli D, Hess CW, Muri RM (2009) One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect. Stroke 40:2791–2796

    Article  PubMed  Google Scholar 

  127. Cazzoli D, Muri RM, Hess CW, Nyffeler T (2010) Treatment of hemispatial neglect by means of rTMS–a review. Restor Neurol Neurosci 28:499–510

    PubMed  Google Scholar 

  128. Nelles G, Esser J, Eckstein A, Tiede A, Gerhard H, Diener HC (2001) Compensatory visual field training for patients with hemianopia after stroke. Neurosci Lett 306:189–192

    Article  PubMed  CAS  Google Scholar 

  129. Schmielau F, Wong EK Jr (2007) Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment. J Neuroeng Rehabil 4:31

    Article  PubMed  Google Scholar 

  130. Karnath HO (2007) Pusher syndrome–a frequent but little-known disturbance of body orientation perception. J Neurol 254:415–424

    Article  PubMed  Google Scholar 

  131. Steultjens EM, Dekker J, Bouter LM, Leemrijse CJ, van den Ende CH (2005) Evidence of the efficacy of occupational therapy in different conditions: an overview of systematic reviews. Clin Rehabil 19:247–254

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Serafin Beer for helpful discussion and comments on the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvan J. Albert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albert, S.J., Kesselring, J. Neurorehabilitation of stroke. J Neurol 259, 817–832 (2012). https://doi.org/10.1007/s00415-011-6247-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6247-y

Keywords

Navigation