Skip to main content

Advertisement

Log in

Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Cognitive deficits in behavioral-variant frontotemporal dementia (bvFTD) and AD are linked to frontal and temporal lobe gray matter (GM) pathology. The aim of this study was to assess the relative contribution of white (WM) and GM abnormalities to cognitive dysfunction in bvFTD and AD. Fractional anisotropy (FA) for the corpus callosum, cingulum (Cg), and uncinate fasciculus (Unc) was determined in 17 bvFTD and 10 AD patients who underwent neuropsychological testing. Regressions were performed to assess the relative contribution of WM and GM abnormalities to cognitive deficits. Multiple regression analysis revealed that in bvFTD, the left anterior Cg FA was related to executive function, the right anterior Cg FA to visual-spatial attention and working memory, the right posterior Cg to visual-constructional abilities and the left Unc FA to Modified Trails Errors. After adding corresponding GM volumes, the left anterior Cg FA, the right anterior cingulate FA, the right posterior cingulate FA and the left uncinate FA remained significant predictors of the cognitive tasks. In the AD group, the left posterior Cg FA and right descending Cg FA were related to visual recall performance but did not remain significant predictors when GM volumes were added to the regression. These results suggest that reduced integrity of specific WM tracts contribute to cognitive deficits observed in bvFTD after accounting for GM atrophy. In AD, memory impairment was related to WM tract injury but this relationship was no longer observed when GM volumes were included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829

    Article  PubMed  CAS  Google Scholar 

  2. Avants BB, Cook PA, Ungar L, Gee JC, Grossman M (2010) Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis. Neuroimage 50:1004–1016

    Article  PubMed  Google Scholar 

  3. Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14:298–309

    Article  PubMed  CAS  Google Scholar 

  4. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  5. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    Article  PubMed  Google Scholar 

  6. Bor D, Duncan J, Lee AC, Parr A, Owen AM (2006) Frontal lobe involvement in spatial span: converging studies of normal and impaired function. Neuropsychologia 44:229–237

    Article  PubMed  Google Scholar 

  7. Boxer AL, Kramer JH, Du AT, Schuff N, Weiner MW, Miller BL, Rosen HJ (2003) Focal right inferotemporal atrophy in AD with disproportionate visual constructive impairment. Neurology 61:1485–1491

    Article  PubMed  CAS  Google Scholar 

  8. Braak H, Braak E, Kalus P (1989) Alzheimer’s disease: areal and laminar pathology in the occipital isocortex. Acta Neuropathol 77:494–506

    Article  PubMed  CAS  Google Scholar 

  9. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    Article  PubMed  CAS  Google Scholar 

  10. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    Article  PubMed  CAS  Google Scholar 

  11. Chao LL, Schuff N, Clevenger EM, Mueller SG, Rosen HJ, Gorno-Tempini ML, Kramer JH, Miller BL, Weiner MW (2007) Patterns of white matter atrophy in frontotemporal lobar degeneration. Arch Neurol 64:1619–1624

    Article  PubMed  Google Scholar 

  12. Corballis PM, Funnell MG, Gazzaniga MS (2000) An evolutionary perspective on hemispheric asymmetries. Brain Cogn 43:112–117

    PubMed  CAS  Google Scholar 

  13. Cowell SF, Egan GF, Code C, Harasty J, Watson JD (2000) The functional neuroanatomy of simple calculation and number repetition: a parametric PET activation study. Neuroimage 12:565–573

    Article  PubMed  CAS  Google Scholar 

  14. Delis D, Kaplan E, Kramer J (2001) The Delis-Kaplan executive function system. The Psychological Corporation, San Antonio

    Google Scholar 

  15. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  PubMed  Google Scholar 

  16. Elderkin-Thompson V, Boone KB, Hwang S, Kumar A (2004) Neurocognitive profiles in elderly patients with frontotemporal degeneration or major depressive disorder. J Int Neuropsychol Soc 10:753–771

    Article  PubMed  Google Scholar 

  17. Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156

    Article  PubMed  CAS  Google Scholar 

  18. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan E (1983) Process versus achievement revisited. In: Wapner S, Kaplan B (eds) Toward a holistic developmental psychology. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  20. Kaplan E, Fein D, Morris R, Delis D (1991) The WAIS-R as a neuropsychological instrument. Psychological Corporation, San Antonio

    Google Scholar 

  21. Kaplan E, Goodglass H, Wintraub S (1983) The Boston Naming Test. Lea and Febiger, Philadelphia

    Google Scholar 

  22. Kohler S, Black SE, Sinden M, Szekely C, Kidron D, Parker JL, Foster JK, Moscovitch M, Winocour G, Szalai JP, Bronskill MJ (1998) Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia 36:901–914

    Article  PubMed  CAS  Google Scholar 

  23. Kramer JH, Jurik J, Sha SJ, Rankin KP, Rosen HJ, Johnson JK, Miller BL (2003) Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cogn Behav Neurol 16:211–218

    Article  PubMed  Google Scholar 

  24. Lezak MD (2004) Executive functions and motor performance. In: Lezak MD (ed) Neuropsychological assessment, 4th edn. Oxford University Press, Oxford, pp 611–646

    Google Scholar 

  25. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    Article  PubMed  CAS  Google Scholar 

  26. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  PubMed  CAS  Google Scholar 

  27. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    Article  PubMed  CAS  Google Scholar 

  28. Neumann M, Kwong LK, Truax AC, Vanmassenhove B, Kretzschmar HA, Van Deerlin VM, Clark CM, Grossman M, Miller BL, Trojanowski JQ, Lee VM (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66:177–183

    Article  PubMed  CAS  Google Scholar 

  29. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931

    Article  PubMed  Google Scholar 

  30. O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS (2004) Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 75:441–447

    Article  PubMed  Google Scholar 

  31. Pa J, Possin KL, Wilson SM, Quitania LC, Kramer JH, Boxer AL, Weiner MW, Johnson JK (2010) Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults. J Int Neuropsychol Soc 16:640–650

    Article  PubMed  Google Scholar 

  32. Park HJ, Kim JJ, Lee SK, Seok JH, Chun J, Kim DI, Lee JD (2008) Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Hum Brain Mapp 29:503–516

    Article  PubMed  Google Scholar 

  33. Rabinovici GD, Rascovsky K, Miller BL (2008) Frontotemporal lobar degeneration: clinical and pathologic overview. Handb Clin Neurol 89:343–364

    Article  PubMed  Google Scholar 

  34. Rabinovici GD, Seeley WW, Kim EJ, Gorno-Tempini ML, Rascovsky K, Pagliaro TA, Allison SC, Halabi C, Kramer JH, Johnson JK, Weiner MW, Forman MS, Trojanowski JQ, Dearmond SJ, Miller BL, Rosen HJ (2007) Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 22:474–488

    Article  PubMed  CAS  Google Scholar 

  35. Schroeter ML, Raczka K, Neumann J, von Cramon DY (2008) Neural networks in frontotemporal dementia—a meta-analysis. Neurobiol Aging 29:418–426

    Article  PubMed  Google Scholar 

  36. Seeley WW (2008) Selective functional, regional, and neuronal vulnerability in frontotemporal dementia. Curr Opin Neurol 21:701–707

    Article  PubMed  Google Scholar 

  37. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  PubMed  CAS  Google Scholar 

  38. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    Article  PubMed  CAS  Google Scholar 

  39. Sjobeck M, Elfgren C, Larsson EM, Brockstedt S, Latt J, Englund E, Passant U (2010) Alzheimer’s disease (AD) and executive dysfunction. A case-control study on the significance of frontal white matter changes detected by diffusion tensor imaging (DTI). Arch Gerontol Geriatr 50:260–266

    Article  PubMed  Google Scholar 

  40. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    Article  PubMed  CAS  Google Scholar 

  41. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17:1429–1436

    Article  PubMed  Google Scholar 

  42. Stuss DT, Alexander MP (2007) Is there a dysexecutive syndrome? Philos Trans R Soc Lond B Biol Sci 362:901–915

    Article  PubMed  Google Scholar 

  43. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87

    Article  PubMed  Google Scholar 

  44. Warrington EK, James M (1991) A new test of object decision: 2D silhouettes featuring a minimal view. Cortex 27:370–383

    PubMed  CAS  Google Scholar 

  45. Wechsler D (1997) WAISIII and WMSIII—Wechsler Adult Intelligence Scale and Wechsler Adult Memory Scale, 3rd edn. The Psychological Corporation, San Antonio

    Google Scholar 

  46. Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, Miller BL, Weiner MW (2009) White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 132:2579–2592

    Article  PubMed  Google Scholar 

  47. Zhukareva V, Mann D, Pickering-Brown S, Uryu K, Shuck T, Shah K, Grossman M, Miller BL, Hulette CM, Feinstein SC, Trojanowski JQ, Lee VM (2002) Sporadic Pick’s disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol 51:730–739

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the participants and their families for their participation in this study. We thank Will Irwin for assistance with the figures. This publication was made possible by Grant numbers P01 AG019724 and P50 AG023501 from NIH National Institute on Aging. MCT is supported by Fonds de la recherche en santé du Québec.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Tartaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tartaglia, M.C., Zhang, Y., Racine, C. et al. Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts. J Neurol 259, 1071–1080 (2012). https://doi.org/10.1007/s00415-011-6300-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6300-x

Keywords

Navigation