Skip to main content

Advertisement

Log in

Varied expression of functionally important genes of RPE and choroid in the macula and in the periphery of normal human eyes

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Topographic differences in RPE and choroid between macular and peripheral areas of the eye may predispose to morphologic and cell survival changes with aging. An understanding of the molecular events that distinguish RPE and choroid by their spatial location could give hints for the identification of survival factors and the development of new therapeutic approaches. To determine the mRNA expression of functionally important genes in RPE and choroid of morphologically normal human eyes, tissue patches were dissected from the macula and peripheral locations.

Methods

The mRNA levels of 29 genes with known functions or expression in the RPE/choroid were quantified in these sections by real time RT-PCR. Variations in the mRNA expression were determined due to differences in the mean normalized expression (MNE) between different peripheral locations, left and right eye of the same donor, and eyes of different donors.

Results

In the macula, the lysosomal enzyme cathepsin D (1.27E+00±1.54E-01) and the MERTK ligand Gas6 (1.08E+00±1.60E-01) had the highest MNE, whereas the apoptosis inducer Fas-Ligand (1.41E-04±6.46E-05) and the ROS internalization receptor CD36 (2.15E-04±1.11E-05) demonstrated the lowest expression. Interestingly, the PEDF expression (1.80E-01±4.56E-02) was 10 times higher than the VEGF expression (1.84E-02±2.46E-03) in the macular area. For most of the analyzed genes (52%, e.g. MERTK, integrin αV and β5, RPE65, tyrosinase, VEGF) there was equal gene expression in the macula and in the periphery. For 31% of the genes (e.g. CD36, MAP1B) there was higher expression in the macula and for 17% of the genes (e.g. 11-cis RDH, VEGF-R2, PEDF) there was higher expression in the periphery.

Conclusions

Whereas most of the analyzed genes expressed in RPE and choroid had equal mRNA expression levels in the macula and the periphery with donor dependent variations, there are important exceptions in genes that are involved in the maintenance of a specific vascular status in the macula (PEDF, VEGF and VEGR-R2) and in the recycling of rod outer segments (11-cis RDH). Applying this technique to the gene expression analysis of patients with AMD could identify those genes that are involved in molding of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alge CS, Priglinger SG, Neubauer AS, Kampik A (2002) Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin. Invest Ophthalmol Vis Sci 43:3575–3582

    PubMed  Google Scholar 

  2. Bosch E, Horwitz J, Bok D (1993) Phagocytosis of outer segments by retinal pigment epithelium: phagosome–lysosome interaction. J Histochem Cytochem 41:253–263

    PubMed  CAS  Google Scholar 

  3. Boulton M, Moriarty P, Jarvis-Evans J, Marcyniuk B (1994) Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol 78:125–129

    PubMed  CAS  Google Scholar 

  4. Boyle D, Tien L, Cooper NGF, Shepherd V (1991) A mannose receptor is involved in retinal phagocytosis. Invest Ophthalmol Vis Sci 32:1464–1470

    PubMed  CAS  Google Scholar 

  5. Burke JM (1993) Cytochrome oxidase activity in bovine and human retinal pigment epithelium: topographical and age-related differences. Curr Eye Res 12:1073–1079

    PubMed  CAS  Google Scholar 

  6. Burke JM, McKAY BS, Jaffe GJ (1991) Retinal pigment epithelial cells of the posterior pole have fewer Na/K adenosine triphosphatase pumps than peripheral cells. Invest Ophthalmol Vis Sci 32:2042–2046

    PubMed  CAS  Google Scholar 

  7. D’Cruz PM, Yasumura D, Weir J, Matthes MT (2000) Mutation of the receptor tyrosine kinase gene mertk in the retinal dystrophic RCS rat [In Process Citation]. Hum Mol Genet 9:645–651

    Article  PubMed  CAS  Google Scholar 

  8. Dawson DW, Volpert OV, Gillis P, Crawford SE (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248

    Article  PubMed  CAS  Google Scholar 

  9. Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43:3312–3318

    PubMed  Google Scholar 

  10. Duguid IG, Boyd AW, Mandel TE (1992) Adhesion molecules are expressed in the human retina and choroid. Curr Eye Res 11 Suppl:153–159

    PubMed  CAS  Google Scholar 

  11. Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442

    PubMed  Google Scholar 

  12. Espinosa-Heidmann DG, Reinoso MA, Pina Y, Csaky KG (2005) Quantitative enumeration of vascular smooth muscle cells and endothelial cells derived from bone marrow precursors in experimental choroidal neovascularization. Exp Eye Res 80:369–378

    Article  PubMed  CAS  Google Scholar 

  13. Feng W, Yasumura D, Matthes MT, LaVail MM (2002) Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. J Biol Chem 277:17016–17022

    Article  PubMed  CAS  Google Scholar 

  14. Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E (1997) Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc Natl Acad Sci USA 94:12932–12937

    Article  PubMed  CAS  Google Scholar 

  15. Finnemann SC, Silverstein RL (2001) Differential roles of CD36 and {alpha}v{beta}5 integrin in photoreceptor phagocytosis by the retinal pigment epithelium. J Exp Med 194:1289–1298

    Article  PubMed  CAS  Google Scholar 

  16. Gogat K, Le Gat L, Van Den BL, Marchant D (2004) VEGF and KDR gene expression during human embryonic and fetal eye development. Invest Ophthalmol Vis Sci 45:7–14

    Article  Google Scholar 

  17. Gollapalli DR, Maiti P, Rando RR (2003) RPE65 operates in the vertebrate visual cycle by stereospecifically binding all-trans-retinyl esters. Biochemistry 42:11824–11830

    Article  PubMed  CAS  Google Scholar 

  18. Hall MO, Obin MS, Prieto AL, Burgess BL (2002) Gas6 binding to photoreceptor outer segments requires gamma-carboxyglutamic acid (Gla) and Ca(2+) and is required for OS phagocytosis by RPE cells in vitro. Exp Eye Res 75:391–400

    Article  PubMed  CAS  Google Scholar 

  19. Harman AM, Fleming PA, Hoskins RV, Moore SR (1997) Development and aging of cell topography in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 38:2016–2026

    PubMed  CAS  Google Scholar 

  20. He Y, Smith SK, Day KA, Clark DE (1999) Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol 13:537–545

    Article  PubMed  CAS  Google Scholar 

  21. Ishibashi K, Tian J, Handa JT (2004) Similarity of mRNA phenotypes of morphologically normal macular and peripheral retinal pigment epithelial cells in older human eyes. Invest Ophthalmol Vis Sci 45:3291–3301

    Article  PubMed  Google Scholar 

  22. Kendall RL, Wang G, Thomas KA (1996) Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 226:324–328

    Article  PubMed  CAS  Google Scholar 

  23. Kociok N, Hueber A, Esser P, Schraermeyer U (2002) Vitreous treatment of cultured human RPE cells results in differential expression of 10 new genes. Invest Ophthalmol Vis Sci 43:2474–2480

    PubMed  Google Scholar 

  24. Mansour-Robaey S, Clarke DB, Wang YC, Bray GM (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 91:1632–1636

    Article  PubMed  CAS  Google Scholar 

  25. Martin G, Schlunck G, Hansen LL, Agostini HT (2004) Differential expression of angioregulatory factors in normal and CNV-derived human retinal pigment epithelium. Graefe’s Arch Clin Exp Ophthalmol 242:321–326

    Article  PubMed  CAS  Google Scholar 

  26. McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG (2001) Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 4:622–629

    Article  PubMed  CAS  Google Scholar 

  27. Miceli MV, Newsome DA, Tate DJJ (1997) Vitronectin is responsible for serum-stimulated uptake of rod outer segments by cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 38:1588–1597

    PubMed  CAS  Google Scholar 

  28. Miyamura N, Mishima K, Honda S, Aotaki-Keen AE (2001) Age and topographic variation of insulin-like growth factor-binding protein 2 in the human RPE. Invest Ophthalmol Vis Sci 42:1626–1630

    PubMed  CAS  Google Scholar 

  29. Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379

    PubMed  CAS  Google Scholar 

  30. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol 121:181–189

    PubMed  CAS  Google Scholar 

  31. Peinado-Ramon P, Salvador M, Villegas-Perez MP, Vidal-Sanz M (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 37:489–500

    PubMed  CAS  Google Scholar 

  32. Platts KE, Benson MT, Rennie IG, Sharrard RM (1995) Cytokine modulation of adhesion molecule expression on human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36:2262–2269

    PubMed  CAS  Google Scholar 

  33. Politi LE, Rotstein NP, Carri NG (2001) Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Invest Ophthalmol Vis Sci 42:3008–3015

    PubMed  CAS  Google Scholar 

  34. Rakoczy PE, Lai CM, Baines M, Di Grandi S (1997) Modulation of cathepsin D activity in retinal pigment epithelial cells. Biochem J 324:935–940

    PubMed  CAS  Google Scholar 

  35. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 62–66

  36. Regan CM, de Grip WJ, Daemen FJ, Bonting SL (1980) Degradation of rhodopsin by a lysosomal fraction of retinal pigment epithelium: biochemical aspects of the visual process. XLI. Exp Eye Res 30:183–191

    Article  PubMed  CAS  Google Scholar 

  37. Ryeom SW, Sparrow JR, Silverstein RL (1996) CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 109:387–395

    PubMed  CAS  Google Scholar 

  38. Simon A, Hellman U, Wernstedt C, Eriksson U (1995) The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem 270:1107–1112

    Article  PubMed  CAS  Google Scholar 

  39. Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  PubMed  CAS  Google Scholar 

  40. Simpson DA, Feeney S, Boyle C, Stitt AW (2000) Retinal VEGF mRNA measured by SYBR green I fluorescence: A versatile approach to quantitative PCR. Mol Vis 6:178–183

    PubMed  CAS  Google Scholar 

  41. SPSS Inc. SPSS for Windows. (12). 2005

  42. van Meurs JC, Van Den Biesen PR (2003) Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am J Ophthalmol 136:688–695

    Article  PubMed  Google Scholar 

  43. Vandesompele J, De Preter K, Pattyn F, Poppe B (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  44. Watzke RC, Soldevilla JD, Trune DR (1993) Morphometric analysis of human retinal pigment epithelium: correlation with age and location. Curr Eye Res 12:133–142

    PubMed  CAS  Google Scholar 

  45. Zinn KM, MF Marmor (1979) The retinal pigment epithelium. Harvard University Press, Cambridge, Mass. and London

    Google Scholar 

Download references

Acknowledgements

The authors thank the members of the eye bank of the Center of Ophthalmology, University of Cologne for excellent support.

This study was funded by DFG Jo 324/4-1, DFG Jo 324/6-1(Emmy Noether), and Nolting-Stiftung, Imhoff-Stiftung, and Gilen-Stiftung, Cologne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kociok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kociok, N., Joussen, A.M. Varied expression of functionally important genes of RPE and choroid in the macula and in the periphery of normal human eyes. Graefe's Arch Clin Exp Ophthalmol 245, 101–113 (2007). https://doi.org/10.1007/s00417-006-0266-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-006-0266-x

Keywords

Navigation