Skip to main content
Log in

Differentiation-specific association of HP1α and HP1β with chromocentres is correlated with clustering of TIF1β at these sites

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mammalian heterochromatin protein 1 (HP1α, HP1β, HP1γ subtypes) and transcriptional intermediary factor TIF1β play an important role in the regulation of chromatin structure and function. Here, we investigated the nuclear arrangement of these proteins during differentiation of embryonal carcinoma P19 cells into primitive endoderm and into the neural pathway. Additionally, the differentiation potential of trichostatin A (TSA) and 5-deoxyazacytidine (5-dAzaC) was studied. In 70% of the cells from the neural pathway and in 20% of TSA-stimulated cells, HP1α and HP1β co-localized and associated with chromocentres (clusters of centromeres), which correlated with clustering of TIF1β at these heterochromatic regions. The cell types that we studied were also characterized by a pronounced focal distribution of HP1γ. The above-mentioned nuclear patterns of HP1 and TIF1β proteins were completely different from the nuclear patterns observed in the remaining cell types investigated, in which HP1α was associated with chromocentres while HP1β and HP1γ were largely localized in distinct nuclear regions. Moreover, a dispersed nuclear distribution of TIF1β was observed. Our findings showed that the nuclear arrangement of HP1 subtypes and TIF1β is differentiation specific, and seems to be more important than changes in the levels of these proteins, which were relatively stable during all the induced differentiation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aasland R, Stewart AF (1995) The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acid Res 23:3168–3173

    Article  PubMed  CAS  Google Scholar 

  • Alcobia I, Dilao R, Parreira L (2000) Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 95:1608–1615

    PubMed  CAS  Google Scholar 

  • Alcobia I, Quina AS, Neves H, Clode N, Parreira L (2003) The spatial organization of centromeric heterochromatin during normal human lymphopoiesis: evidence for ontogenically determined spatial patterns. Exp Cell Res 90:358–369

    Article  CAS  Google Scholar 

  • Andrews PW (2002) From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 357:405–417

    Article  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Bártová E, Kozubek S (2006) Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 98:323–336

    Article  PubMed  Google Scholar 

  • Bártová E, Pacherník J, Harničarová A, Kovařík A, Kovaříková M, Hofmanová J, Skalníková M, Kozubek M, Kozubek S (2005) Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci 118:5035–5046

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3:207–217

    Article  PubMed  CAS  Google Scholar 

  • Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R (2002) Cell differentiation induces TIF1beta association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 115:3439–3448

    PubMed  CAS  Google Scholar 

  • Cammas F, Herzog M, Lerouge T, Chambon P, Losson R (2004) Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev 18:2147–2160

    Article  PubMed  CAS  Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299:721–725

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10:204–210

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA 87:9923–9927

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Javerzat JP, Lorentz A, Schmidt H, Cranston G, Allshire R (1995) The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269:1429–3141

    Article  PubMed  CAS  Google Scholar 

  • Everett RD, Earnshaw WC, Pluta AF, Sternsdorf T, Ainsztein AM, Carmena M, Ruchaud S, Hsu WL, Orr A (1999) A dynamic connection between centromeres and ND10 proteins. J Cell Sci 112:3443–3454

    PubMed  CAS  Google Scholar 

  • Gilbert N, Boyle S, Sutherland H, de Las Heras J, Allan J, Jenuwein T, Bickmore WA (2003) Formation of facultative heterochromatin in the absence of HP1. EMBO J 22:5540–5550

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist S, Gilbert N, Perry P, Bickmore WA (2004) Nuclear organization of centromeric domains is not perturbed by inhibition of histone deacetylases. Chromosome Res 12:505–516

    Article  PubMed  CAS  Google Scholar 

  • Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Haraguchi T, Masumoto H, Hiraoka Y (2003) Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J Cell Sci 116:3327–3338

    Article  PubMed  CAS  Google Scholar 

  • Horsley D, Hutchings A, Butcher GW, Singh PB (1996) M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. Cytogenet Cell Genet 73:308–311

    Article  PubMed  CAS  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295:2080–2083

    Article  PubMed  CAS  Google Scholar 

  • Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94:253–262

    Article  PubMed  CAS  Google Scholar 

  • Kellum R, Alberts BM (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J Cell Sci 108:1419–1431

    PubMed  CAS  Google Scholar 

  • Kozubek M, Kozubek S, Lukášová E, Marečková A, Bártová E, Skalníková M, Jergová A (1999) High-resolution cytometry of FISH dots in interphase cell nuclei. Cytometry 36: 279–293

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  PubMed  CAS  Google Scholar 

  • Lechner MS, Begg GE, Speicher DW, Rauscher FJ III (2000) Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol 20:6449–6465

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kirschmann DA, Wallrath LL (2002) Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci USA 99:16462–16469

    Article  PubMed  CAS  Google Scholar 

  • Lukášová E, Kořístek Z, Falk M, Kozubek S, Grigoryev S, Kozubek M, Ondřej V, Kroupová I (2005) Methylation of histones in myeloid leukemias as a potential marker of granulocyte abnormalities. J Leukoc Biol 77:100–111

    PubMed  Google Scholar 

  • McBurney MW (1993) P19 embryonal carcinoma cells. Int J Dev Biol 37:135–140

    PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–234

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Courvalin JC, Buendia B (2000) HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet 90:279–284

    Article  PubMed  CAS  Google Scholar 

  • Minc E, Allory Y, Courvalin JC, Buendia B (2001) Immunolocalization of HP1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci 23:171–174

    Article  PubMed  CAS  Google Scholar 

  • Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M (2002) Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep 3:975–981

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Losson R (1999) Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 18:6385–6395

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R (2001) Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 7:729–739

    Article  PubMed  CAS  Google Scholar 

  • Pacherník J, Bryja V, Ešner M, Kubala L, Dvořák P, Hampl A (2005) Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid: inhibitory effect of serum. Physiol Res 54:115–122

    PubMed  Google Scholar 

  • Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263–273

    Article  PubMed  CAS  Google Scholar 

  • Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, Rauscher FJ III (1999) KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 19:4366–4378

    PubMed  CAS  Google Scholar 

  • Saffery R, Earle E, Irvine DV, Kalitsis P, Choo KH (1999) Conservation of centromere protein in vertebrates. Chromosome Res 7:261–265

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3: 114–120

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Roche D, Bickmore WA, Almouzni G (2005) The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy? EMBO Rep 6:520–524

    Article  PubMed  CAS  Google Scholar 

  • Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, van Driel R (2005) In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol Cell Biol 25:4552–4564

    Article  PubMed  CAS  Google Scholar 

  • Wakimoto BT (1998) Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93:321–324

    Article  PubMed  CAS  Google Scholar 

  • Wiblin AE, Cui W, Clark AJ, Bickmore WA (2005) Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonal stem cells. J Cell Sci 118:3861–3868

    Article  PubMed  CAS  Google Scholar 

  • Wreggett KA, Hill F, James PS, Hutchings A, Butcher GW, Singh PB (1994) A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet Cell Genet 66:99–103

    PubMed  CAS  Google Scholar 

  • Yamada T, Fukuda R, Himeno M, Sugimoto K (1999) Functional domain structure of human heterochromatin protein HP1(Hsalpha): involvement of internal DNA-binding and C-terminal self-association domains in the formation of discrete dots in interphase nuclei. J Biochem (Tokyo) 125:832–837

    CAS  Google Scholar 

  • Yamaguchi K, Hidema S, Mizuno S (1998) Chicken chromobox proteins: cDNA cloning of CHCB1, -2, -3 and their relation to W-heterochromatin. Exp Cell Res 242:303–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Laboratory of Receptor Biology and Gene Expression, National Institute of Health, Bethesda for plasmids encoding GFP-HP1 (α, β and γ) and Pavel Draber for TU-20 antibody. The TROMA-I cell line, developed by Philippe Brulet and Rolf Kemler, was obtained from the Developmental Studies Hybridoma Bank. This cell line was developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. Our work was supported by the following grants: AVOZ50040507, IQS500040508, IAA5004306, LC535, 1P050C084 and Grant Agency of the Czech Republic (204/06/0978, 524/03/P171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Bártová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bártová, E., Pacherník, J., Kozubík, A. et al. Differentiation-specific association of HP1α and HP1β with chromocentres is correlated with clustering of TIF1β at these sites. Histochem Cell Biol 127, 375–388 (2007). https://doi.org/10.1007/s00418-006-0259-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0259-1

Keywords

Navigation