Skip to main content

Advertisement

Log in

Automated quantification of nuclear immunohistochemical markers with different complexity

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Manual quantification of immunohistochemically stained nuclear markers is still laborious and subjective and the use of computerized systems for digital image analysis have not yet resolved the problems of nuclear clustering. In this study, we designed a new automatic procedure for quantifying various immunohistochemical nuclear markers with variable clustering complexity. This procedure consisted of two combined macros. The first, developed with a commercial software, enabled the analysis of the digital images using color and morphological segmentation including a masking process. All information extracted with this first macro was automatically exported to an Excel datasheet, where a second macro composed of four different algorithms analyzed all the information and calculated the definitive number of positive nuclei for each image. One hundred and eighteen images with different levels of clustering complexity was analyzed and compared with the manual quantification obtained by a trained observer. Statistical analysis indicated a great reliability (intra-class correlation coefficient > 0.950) and no significant differences between the two methods. Bland–Altman plot and Kaplan–Meier curves indicated that the results of both methods were concordant around 90% of analyzed images. In conclusion, this new automated procedure is an objective, faster and reproducible method that has an excellent level of accuracy, even with digital images with a high complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J, Banham AH, Roncador G, Montalban C, Piris MA (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11:1467–1473

    Article  PubMed  Google Scholar 

  • Alvaro T, Lejeune M, Camacho FI, Salvado MT, Sanchez L, Garcia JF, Lopez C, Jaen J, Bosch R, Pons LE, Bellas C, Piris MA (2006a) The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma. Haematologica 91:1605–1612

    PubMed  CAS  Google Scholar 

  • Alvaro T, Lejeune M, Salvado MT, Lopez C, Jaen J, Bosch R, Pons LE (2006b) Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol 24:5350–5357

    Article  PubMed  Google Scholar 

  • Alvaro-Naranjo T, Lejeune M, Salvado-Usach MT, Bosch-Princep R, Reverter-Branchat G, Jaen-Martinez J, Pons-Ferre LE (2005) Tumor-infiltrating cells as a prognostic factor in Hodgkin’s lymphoma: a quantitative tissue microarray study in a large retrospective cohort of 267 patients. Leuk Lymphoma 46:1581–1591

    Article  PubMed  Google Scholar 

  • Ancin H, Roysam B, Dufresne TE, Chestnut MM, Ridder GM, Szarowski DH, Turner JN (1996) Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy. Cytometry 25:221–234

    Article  PubMed  CAS  Google Scholar 

  • Anderson NH, Hamilton PW, Bartels PH, Thompson D, Montironi R, Sloan JM (1997) Computerized scene segmentation for the discrimination of architectural features in ductal proliferative lesions of the breast. J Pathol 181:374–380

    Article  PubMed  CAS  Google Scholar 

  • Bartels PH, Bibbo M, Graham A, Paplanus S, Shoemaker RL, Thompson D (1989) Image understanding system for histopathology. Anal Cell Pathol 1:195–214

    PubMed  CAS  Google Scholar 

  • Bauer KD, de la Torre-Bueno J, Diel IJ, Hawes D, Decker WJ, Priddy C, Bossy B, Ludmann S, Yamamoto K, Masih AS, Espinoza FP, Harrington DS (2000) Reliable and sensitive analysis of occult bone marrow metastases using automated cellular imaging. Clin Cancer Res 6:3552–3559

    PubMed  CAS  Google Scholar 

  • Bibbo M, Kim DH, di Loreto C, Dytch HE, Galera-Davidson H, Thompson D, Richards DL, Bartels HG, Bartels PH (1990) Tissue architectural features for the grading of prostatic carcinoma. Anal Quant Cytol Histol 12:229–236

    PubMed  CAS  Google Scholar 

  • Bosch Princep R, Lejeune M, Salvado Usach MT, Jaen Martinez J, Pons Ferre LE, Alvaro Naranjo T (2005) Decreased number of granzyme B+ activated CD8+ cytotoxic T lymphocytes in the inflammatory background of HIV-associated Hodgkin’s lymphoma. Ann Hematol 84:661–666

    Article  PubMed  Google Scholar 

  • Brey EM, Lalani Z, Johnston C, Wong M, McIntire LV, Duke PJ, Patrick CW Jr (2003) Automated selection of DAB-labeled tissue for immunohistochemical quantification. J Histochem Cytochem 51:575–584

    PubMed  CAS  Google Scholar 

  • de Jong D, Rosenwald A, Chhanabhai M, Gaulard P, Klapper W, Lee A, Sander B, Thorns C, Campo E, Molina T, Norton A, Hagenbeek A, Horning S, Lister A, Raemaekers J, Gascoyne RD, Salles G, Weller E (2007) Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications—a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol 25:805–812

    Article  PubMed  Google Scholar 

  • Garbay C, Chassery JM, Brugal G (1986) An iterative region-growing process for cell image segmentation based on local color similarity and global shape criteria. Anal Quant Cytol Histol 8:25–34

    PubMed  CAS  Google Scholar 

  • Garrido A, de la Blanca NP (2000) Applying deformable templates for cell image segmentation. Pattern Recognit 33:821–832

    Article  Google Scholar 

  • Jagoe R, Steel JH, Vucicevic V, Alexander N, Van Noorden S, Wootton R, Polak JM (1991) Observer variation in quantification of immunocytochemistry by image analysis. Histochem J 23:541–547

    Article  PubMed  CAS  Google Scholar 

  • Johansson AC, Visse E, Widegren B, Sjogren HO, Siesjo P (2001) Computerized image analysis as a tool to quantify infiltrating leukocytes: a comparison between high- and low-magnification images. J Histochem Cytochem 49:1073–1079

    PubMed  CAS  Google Scholar 

  • Johnsson A, Olsson C, Anderson H, Cavallin-Stahl E (1994) Evaluation of a method for quantitative immunohistochemical analysis of cisplatin-DNA adducts in tissues from nude mice. Cytometry 17:142–150

    Article  PubMed  CAS  Google Scholar 

  • Karlsson MG, Davidsson A, Hellquist HB (1994) Quantitative computerized image analysis of immunostained lymphocytes. A methodological approach. Pathol Res Pract 190:799–807

    PubMed  CAS  Google Scholar 

  • Keenan SJ, Diamond J, McCluggage WG, Bharucha H, Thompson D, Bartels PH, Hamilton PW (2000) An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN). J Pathol 192:351–362

    Article  PubMed  CAS  Google Scholar 

  • Leong FJ, Leong AS (2004) Digital imaging in pathology: theoretical and practical considerations, and applications. Pathology 36:234–241

    Article  PubMed  Google Scholar 

  • Levine MD (1985) Vision in man and machines. McGraw-Hill, New York

    Google Scholar 

  • Lin G, Adiga U, Olson K, Guzowski JF, Barnes CA, Roysam B (2003) A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A 56:23–36

    Article  PubMed  Google Scholar 

  • Lockett SJ, Herman B (1994) Automatic detection of clustered, fluorescent-stained nuclei by digital image-based cytometry. Cytometry 17:1–12

    Article  PubMed  CAS  Google Scholar 

  • Loukas CG, Wilson GD, Vojnovic B, Linney A (2003) An image analysis-based approach for automated counting of cancer cell nuclei in tissue sections. Cytometry A 55:30–42

    Article  PubMed  Google Scholar 

  • Ma W, Lozanoff S (1999) A full color system for quantitative assessment of histochemical and immunohistochemical staining patterns. Biotech Histochem 74:1–9

    Article  PubMed  CAS  Google Scholar 

  • Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, del Pozo F (1997) Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28:289–297

    Article  PubMed  CAS  Google Scholar 

  • Matkowskyj KA, Cox R, Jensen RT, Benya RV (2003) Quantitative immunohistochemistry by measuring cumulative signal strength accurately measures receptor number. J Histochem Cytochem 51:205–214

    PubMed  CAS  Google Scholar 

  • McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721

    PubMed  Google Scholar 

  • Mesker WE, vd Burg JM, Oud PS, Knepfle CF, Ouwerkerk-v Velzen MC, Schipper NW, Tanke HJ (1994) Detection of immunocytochemically stained rare events using image analysis. Cytometry 17:209–215

    Article  PubMed  CAS  Google Scholar 

  • Mosedale DE, Metcalfe JC, Grainger DJ (1996) Optimization of immunofluorescence methods by quantitative image analysis. J Histochem Cytochem 44:1043–1050

    PubMed  CAS  Google Scholar 

  • Poon SS, Ward RK, Palcic B (1992) Automated image detection and segmentation in blood smears. Cytometry 13:766–774

    Article  PubMed  CAS  Google Scholar 

  • Ranefall P, Egevad L, Nordin B, Bengtsson E (1997) A new method for segmentation of colour images applied to immunohistochemically stained cell nuclei. Anal Cell Pathol 15:145–156

    PubMed  CAS  Google Scholar 

  • Rubin MA, Zerkowski MP, Camp RL, Kuefer R, Hofer MD, Chinnaiyan AM, Rimm DL (2004) Quantitative determination of expression of the prostate cancer protein alpha-methylacyl-CoA racemase using automated quantitative analysis (AQUA): a novel paradigm for automated and continuous biomarker measurements. Am J Pathol 164:831–840

    PubMed  CAS  Google Scholar 

  • Seidal T, Balaton AJ, Battifora H (2001) Interpretation and quantification of immunostains. Am J Surg Pathol 25:1204–1207

    Article  PubMed  CAS  Google Scholar 

  • Taylor CR (2000) The total test approach to standardization of immunohistochemistry. Arch Pathol Lab Med 124:945–951

    PubMed  CAS  Google Scholar 

  • Taylor CR (2006) Quantifiable internal reference standards for immunohistochemistry: the measurement of quantity by weight. Appl Immunohistochem Mol Morphol 14:253–259

    Article  PubMed  Google Scholar 

  • Underwood RA, Gibran NS, Muffley LA, Usui ML, Olerud JE (2001) Color subtractive-computer-assisted image analysis for quantification of cutaneous nerves in a diabetic mouse model. J Histochem Cytochem 49:1285–1291

    PubMed  CAS  Google Scholar 

  • van Der Laak JA, Pahlplatz MM, Hanselaar AG, de Wilde PC (2000) Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy. Cytometry 39:275–284

    Article  Google Scholar 

  • Wu HS, Barba J, Gil J (1998) A parametric fitting algorithm for segmentation of cell images. IEEE Trans Biomed Eng 45:400–407

    Article  PubMed  CAS  Google Scholar 

  • Yaziji H, Barry T (2006) Diagnostic immunohistochemistry: what can go wrong? Adv Anat Pathol 13:238–246

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank María del Mar Barbera, Bárbara Tomás, Vanesa Gestí, Ana Suñé, and Marc Iniesta for their skilful technical assistance, Anna Carot and Rosa Cabrera for their excellent secretarial work. This work was supported by grants FIS 04/1440, 04/1467, and 05/1527 from the Ministerio de Sanidad y Consumo, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Jaén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, C., Lejeune, M., Salvadó, M.T. et al. Automated quantification of nuclear immunohistochemical markers with different complexity. Histochem Cell Biol 129, 379–387 (2008). https://doi.org/10.1007/s00418-007-0368-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0368-5

Keywords

Navigation