Skip to main content
Log in

Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The bioflavonoid quercetin has long been known to exert anti-tumor effects, although the underlying mechanisms remain unknown. Investigation of the potential interference of this anti-oxidant with the efficacy of cell stress-inducing anti-cancer drugs revealed extensive intracellular vacuolation induced by quercetin in epithelial cancer cells that led to cell cycle arrest and ensuing apoptosis. Accumulation of biomarkers of autophagy, including fluorescent autophagy markers and acidotropic dyes characterized these vacuoles as phagolysosomes. Prior to the formation of autophagosomes, an immediate and pronounced inhibition of the autophagy-controlling mTOR activity in quercetin-treated cancer cells occurred, accompanied by a marked reduction in the phosphorylation of the mTOR substrates 4E-BP1 and p70S6 kinase. Assessment of cellular proteasome activity revealed an effective and immediate inhibition of the activity of the proteasome by quercetin in cancer cells. In addition to the formation of autophagosomes, accumulation of poly-ubiquitinated protein aggregates was observed. Thus, proteasome inhibition by quercetin can be regarded as a major cause of quercetin-induced cancer cell death. These results suggest potential new applications for quercetin in cancer science and identify quercetin as an easy-to-handle agent to study proteasome activity, mTOR signaling and autophagy in human cancer cells for cell biological purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berkers CR, Verdoes M, Lichtman E, Fiebiger E, Kessler BM, Anderson KC, Ploegh HL, Ovaa H, Galardy PJ (2005) Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat Methods 2:357–362

    Article  PubMed  CAS  Google Scholar 

  • Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423

    Article  PubMed  Google Scholar 

  • Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740

    Article  PubMed  CAS  Google Scholar 

  • Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  PubMed  CAS  Google Scholar 

  • Brancolini C (2008) Inhibitors of the ubiquitin-proteasome system and the cell death machinery: How many pathways are activated? Curr Mol Pharmacol 1:24–37

    Article  PubMed  CAS  Google Scholar 

  • Brüning A (2011) Analysis of nelfinavir-induced endoplasmic reticulum stress. Methods Enzymol 491C:127–142

    Article  Google Scholar 

  • Brüning A, Burger P, Vogel M, Rahmeh M, Friese K, Lenhard M, Burges A (2008) Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis. Invest New Drugs doi:101007/s10637-008-9206-4

  • Brüning A, Friese K, Burges A, Mylonas I (2010a) Tamoxifen enhances the cytotoxic effects of nelfinavir in breast cancer cells. Breast Cancer Res 12:R45

    Article  PubMed  Google Scholar 

  • Brüning A, Gingelmaier A, Friese K, Mylonas I (2010b) New prospects for nelfinavir in non-HIV-related diseases. Curr Mol Pharmacol 3:91–97

    Article  PubMed  Google Scholar 

  • Brüning A, Vogel M, Mylonas I, Friese K, Burges A (2011) Bortezomib targets the caspase-like proteasome activity in cervical cancer cells, triggering apoptosis that can be enhanced by nelfinavir. Current Cancer Drug Targets 11:799–809

    Article  PubMed  Google Scholar 

  • Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40:238–252

    Article  PubMed  CAS  Google Scholar 

  • Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344–357

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11:239–253

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    Article  PubMed  CAS  Google Scholar 

  • Curran MP, McKeage K (2009) Bortezomib: a review of its use in patients with multiple myeloma. Drugs 69:859–888

    Article  PubMed  CAS  Google Scholar 

  • Dechsupa S, Kothan S, Vergote J, Leger G, Martineau A, Berangeo S, Kosanlavit R, Moretti JL, Mankhetkorn S (2007) Quercetin, Siamois 1 and Siamois 2 induce apoptosis in human breast cancer MDA-mB-435 cells xenograft in vivo. Cancer Biol Ther 6(1):56–61

    Google Scholar 

  • Gilardini A, Marmiroli P, Cavaletti G (2008) Proteasome inhibition: a promising strategy for treating cancer, but what about neurotoxicity? Curr Med Chem 15:3025–3035

    Article  PubMed  CAS  Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  PubMed  CAS  Google Scholar 

  • Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Choi CH, Park JY, Kang SK, Kim YK (2008) Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res 33(6):971–979

    Google Scholar 

  • Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66:3289–3307

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  PubMed  CAS  Google Scholar 

  • Lafarga M, Berciano MT, Pena E, Mayo I, Castaño JG, Bohmann D, Rodrigues JP, Tavanez JP, Carmo-Fonseca M (2002) Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol Biol Cell 13(8):2771–2782

    Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Moretti L, Cha YI, Niermann KJ, Lu B (2007) Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle 6:793–798

    Article  PubMed  CAS  Google Scholar 

  • Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325

    Article  PubMed  CAS  Google Scholar 

  • Navon A, Ciechanover A (2009) The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem 284:33713–33718

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H (2004) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25:647–659

    Article  PubMed  CAS  Google Scholar 

  • Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, Pintzas A (2007) Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis 28:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Savulescu AF, Rotem A, Harel A (2011) Proteasomes crossing the nuclear border. Nucleus 2(4)

  • Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M (2008) Autophagy-physiology and pathophysiology. Histochem Cell Biol 129:407–420

    Article  PubMed  CAS  Google Scholar 

  • Wu WK, Sakamoto KM, Milani M, Aldana-Masankgay G, Fan D, Wu K, Lee CW, Cho CH, Yu J, Sung JJ (2010) Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist Update 13:87–92

    Article  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Ikenoue T, Chen X, Li L, Inoki K, Guan KL (2009) Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy. Proc Natl Acad Sci USA 106:8923–8928

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The generous supply of bortezomib by Millenium Phamaceuticals, Cambridge, MA, USA, and the generous supply of nelfinavir by Pfizer, Groton, CT, USA, are gratefully appreciated. The authors are much obliged to the highly skilful and motivated technical assistance of Petra Burger (DNA fragmentation assay), Martina Rahmeh (proteasome assay analysis) and Marianne Vogel (FACScan analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Brüning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klappan, A.K., Hones, S., Mylonas, I. et al. Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity. Histochem Cell Biol 137, 25–36 (2012). https://doi.org/10.1007/s00418-011-0869-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0869-0

Keywords

Navigation