Skip to main content
Log in

Muscle strength, power and adaptations to resistance training in older people

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Muscle strength and, to a greater extent, power inexorably decline with ageing. Quantitative loss of muscle mass, referred to as “sarcopenia”, is the most important factor underlying this phenomenon. However, qualitative changes of muscle fibres and tendons, such as selective atrophy of fast-twitch fibres and reduced tendon stiffness, and neural changes, such as lower activation of the agonist muscles and higher coactivation of the antagonist muscles, also account for the age-related decline in muscle function. The selective atrophy of fast-twitch fibres has been ascribed to the progressive loss of motoneurons in the spinal cord with initial denervation of fast-twitch fibres, which is often accompanied by reinnervation of these fibres by axonal sprouting from adjacent slow-twitch motor units (MUs). In addition, single fibres of older muscles containing myosin heavy chains of both type I and II show lower tension and shortening velocity with respect to the fibres of young muscles. Changes in central activation capacity are still controversial. At the peripheral level, the rate of decline in parameters of the surface-electromyogram power spectrum and in the action-potential conduction velocity has been shown to be lower in older muscle. Therefore, the older muscle seems to be more resistant to isometric fatigue (fatigue-paradox), which can be ascribed to the selective atrophy of fast-twitch fibres, slowing in the contractile properties and lower MU firing rates. Finally, specific training programmes can dramatically improve the muscle strength, power and functional abilities of older individuals, which will be examined in the second part of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abernethy P, Wilson G, Logan P (1995) Strength and power assessment. Issues, controversies and challenges. Sports Med 19:401–417

    CAS  PubMed  Google Scholar 

  • Adams GR, Hather BM, Baldwin KM, Dudley GA (1993) Skeletal muscle myosin heavy chain composition and resistance training. J Appl Physiol 74:911–915

    CAS  PubMed  Google Scholar 

  • Allen TH, Anderson EC, Langham WH (1960) Total body potassium and gross body composition in relation to age. J Gerontol 15A:348–357

    Google Scholar 

  • Andersen JL, Terzis G, Kryger A (1999) Increase in the degree of coexpression of myosin heavy chain isoforms in skeletal muscle fibers of the very old. Muscle Nerve 22:449–454

    Article  CAS  PubMed  Google Scholar 

  • Aniansson A, Rundgren A, Sperling L (1980) Evaluation of functional capacity in activities of daily living in 70-year-old men and women. Scand J Rehabil Med 12:145–154

    CAS  PubMed  Google Scholar 

  • Aniansson A, Zetterberg C, Hedberg M (1984) Impaired muscle function with ageing: a background factor in the incidence of fractures of the proximal end of the femur. Clin Orthop 191:192–210

    Google Scholar 

  • Aniansson A, Hedberg M, Henning GB, Grimby G (1986) Muscle morphology, enzymatic activity, and muscle strength in elderly men: a follow-up study. Muscle Nerve 9:585–591

    CAS  PubMed  Google Scholar 

  • Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86:85–92

    CAS  PubMed  Google Scholar 

  • Asmussen E, Heeboll-Nielsen K (1962) Isometric muscle strength in relation to age in men and women. Ergonomics 5:167

    Google Scholar 

  • Åstrand P, Rodhal K (1986) Textbook of work physiology. Mc Graw Hill, Singapore, pp 43–44

  • Avlund K, Schroll M, Davidsen M, Lovborg B, Rantanen T (1994) Maximal isometric muscle strength and functional ability in daily activities among 75-year-old men and women. Scand J Med Sci Sports 4:32–40

    Google Scholar 

  • Baratta R, Solomonow M, Zhou M, Letson D, D’Ambrosia R (1988) Muscular coactivation. The role of antagonist musculature in maintaining knee joint stability. Am J Sports Med 16:113–122

    CAS  PubMed  Google Scholar 

  • Bassey EJ, Harries UJ (1993) Normal values for handgrip strength in 920 men and women aged over 65 years and longitudinal changes over 4 years in 630 survivors. Clin Sci 84:331–337

    CAS  PubMed  Google Scholar 

  • Bassey EJ, Short AH (1990) A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol 60:385–390

    Google Scholar 

  • Bassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA (1992) Leg extensor power and functional performance in very old men and women. Clin Sci 82:321–327

    CAS  PubMed  Google Scholar 

  • Bassey EJ, Mockett SP, Fentem PH (1996) Lack of variation in muscle strength with menstrual status in healthy women aged 45–54 years: data from a national survey. Eur J Appl Physiol 73:382–386

    Google Scholar 

  • Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107:123–136

    CAS  PubMed  Google Scholar 

  • Behm D, Power K, Drinkwater E (2001) Comparison of interpolation and central activation ratios as measures of muscle inactivation. Muscle Nerve 24:925–934

    Article  CAS  PubMed  Google Scholar 

  • Bilodeau M, Erb MD, Nichols JM, Joiner KL, Weeks JB (2001a) Fatigue of elbow flexor muscles in younger and older adults. Muscle Nerve 24:98–106

    Article  CAS  PubMed  Google Scholar 

  • Bilodeau M, Henderson TK, Nolta BE, Pursley PJ, Sandfort GL (2001b) Effect of aging on fatigue characteristics of elbow flexor muscles during sustained submaximal contraction. J Appl Physiol 91:2654–2664

    Google Scholar 

  • Borges O (1989) Isometric and isokinetic knee extension and flexion torque in men and women aged 20–70. Scand J Rehabil Med 21:45–53

    CAS  PubMed  Google Scholar 

  • Brooks SV, Faulkner JA (1994) Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 26:432–439

    CAS  PubMed  Google Scholar 

  • Brown AB, McCartney N, Sale DG (1990) Positive adaptation to weight-lifting training in the elderly. J Appl Physiol 69:1725–1733

    Google Scholar 

  • Brown WF, Strong MJ, Snow R (1988) Methods for estimating numbers of motor units in biceps-brachialis muscle and losses of motor units with aging. Muscle Nerve 11:423–432

    CAS  PubMed  Google Scholar 

  • Bruce SA, Phillips SK, Woledge RC (1997) Interpreting the relation between force and cross-sectional area in human muscle. Med Sci Sports Exerc 29:677–683

    CAS  PubMed  Google Scholar 

  • Buchner DM, Larson EB, Wagner EH, Koepsell TD, DeLateur BJ (1996) Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing 25:386–391

    CAS  PubMed  Google Scholar 

  • Butterfield GE, Thompson J, Rennie MJ, Marcus R, Hintz RL, Hoffman AR (1997) Effect of rhGH and rhIGF-I treatment on protein utilization in elderly men. Am J Physiol 272:E94–E99

    CAS  PubMed  Google Scholar 

  • Campbell AJ, Borrie MJ, Spears GF (1989) Risk factors for falls in a community-based prospective study of people 70 years and older. J Gerontol 44A:M112–M117

    Google Scholar 

  • Celotti F, Negri Cesi P (1992) Anabolic steroids: a review of their effects on the muscles, of their possible mechanisms of action and of their use in athletics. J Steroid Biochem Mol Biol 43:469–477

    Article  CAS  PubMed  Google Scholar 

  • Charette SL, McEvoy L, Pyka G, Snow-Harter C, Guido D, Wiswell RA, Markus R (1991) Muscle hypertrophy response to resistance training in older women. J Appl Physiol 70:1912–1916

    Google Scholar 

  • Connelly DM, Rice CL, Roos MR, Vandervoort AA (1999) Motor unit firing rates and contractile properties in tibialis anterior of young and old men. J Appl Physiol 87:843–852

    Google Scholar 

  • Danneskiold-Samsoe B (1984) Muscle strength and functional capacity in 78 to 81 years old men and women. Eur J Appl Physiol 52:310–314

    Google Scholar 

  • Davies CTM, Rennie R (1968) Human power output. Nature 217:770–771

    CAS  PubMed  Google Scholar 

  • De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13:135–163

    Google Scholar 

  • De Serres SJ, Enoka RM (1998) Older adults can maximally activate the biceps brachii muscle by voluntary command. J Appl Physiol 84:284–291

    Google Scholar 

  • De Vito G, Bernardi M, Forte R, Pulejo C, Macaluso A, Figura F (1998) Determinants of maximal instantaneous muscle power in women aged 50–75 years. Eur J Appl Physiol 78:59–64

    Google Scholar 

  • De Vito G, Bernardi M, Forte R, Pulejo C, Figura F (1999) Effects of a low-intensity conditioning programme on VO2max and maximal instantaneous peak power in elderly women. Eur J Appl Physiol 80:227–232

    Google Scholar 

  • Delbono O, Renganathan M, Messi ML (1997) Excitation-Ca2+ release-contraction coupling in single aged human skeletal muscle fibre. Muscle Nerve 20:S88–S92

    Article  Google Scholar 

  • Doherty TJ, Brown WF (1993) The estimated number and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16:355–366

    CAS  PubMed  Google Scholar 

  • Doherty TJ, Vandervoort AA, Taylor AW, Brown WF (1993) Effects of motor unit losses on strength in older men and women. J Appl Physiol 74:868–874

    CAS  PubMed  Google Scholar 

  • Earles DR, Judge JO, Gunnarsson OT (2000) Velocity training induces power-specific adaptations in highly functioning older adults. Arch Phys Med Rehabil 82:872–878

    Article  Google Scholar 

  • Erim Z, Beg MF, Burke DT, De Luca CJ (1999) Effects of aging on motor unit control properties. J Neurophysiol 82:2081–2091

    CAS  PubMed  Google Scholar 

  • Esposito F, Malgrati D, Veicsteinas A, Orizio C (1996) Time and frequency domain analysis of electromyogram and sound myogram in the elderly. Eur J Appl Physiol 73:503–510

    Google Scholar 

  • Evans WJ (1995) What is sarcopenia? J Gerontol 50A (Spec No):5–8

    Google Scholar 

  • Evans WJ (2000) Exercise strategies should be designed to increase muscle power. J Gerontol 55A:M309–M310

    Google Scholar 

  • Faulkner JA, Claflin DR, McCully KK (1986) Power output of fast and slow fibres from skeletal muscles. In: Jones NL, McCartney N, McComas AJ (eds) Human muscle power. Human Kinetics, Champaign, Ill., pp 81–94

  • Fenn WO, Marsh BS (1935) Muscular force at different speed of shortening. J Physiol (Lond) 85:277–297

    Google Scholar 

  • Ferretti G, Narici MV, Binzoni T, Gariod L, Le Bas JF, Reutenauer H, Cerretelli P (1994) Determinants of peak muscle power: effects of age and physical conditioning. Eur J Appl Physiol 68:111–115

    Google Scholar 

  • Ferretti G, Antonutto G, Denis C, Hoppeler H, Minetti AE, Narici MV, Desplanches D (1997) The interplay of central and peripheral factors in limiting maximal oxygen consumption in man after prolonged bed rest. J Physiol (Lond) 501:677–686

    Google Scholar 

  • Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ (1990) High-intensity strength training in nonagenarians. J Am Med Assoc 263:3029–3034

    CAS  Google Scholar 

  • Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330:1769–1775

    Google Scholar 

  • Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, Fiatarone Singh MA (2002) High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc 50:655–662

    Article  PubMed  Google Scholar 

  • Foldvari M, Clark M, Laviolette LC, Bernstein MA, Kaliton D, Castaneda C, Pu CT, Hausdorff JM, Fielding RA, Fiatarone Singh MA (2000) Association of muscle power with functional status in community-dwelling elderly women. J Gerontol 55A:M192–M199

    Google Scholar 

  • Frontera WR, Meredith CN (1989) Strength training in the elderly. In: Harris R, Harris S (eds) Physical activity, aging and sports. Center for the Study of Aging, Albany, New York, pp 319–333

  • Frontera WR, Meredith CN, O’Reilly KP, Knuttgen HG, Evans WJ (1988) Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 64:1038–1044

    CAS  PubMed  Google Scholar 

  • Frontera WR, Hughes VA, Lutz KJ, Evans WJ (1991) A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol 71:644–650

    CAS  PubMed  Google Scholar 

  • Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000a) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88:1321–1326

    Google Scholar 

  • Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R (2000b) Skeletal muscle fiber quality in older men and women. Am J Physiol 279:C611–C618

    CAS  Google Scholar 

  • Fry AC, Newton RU (2002) A brief history of strength training and basic principles and concepts. In: Kraemer WJ, Häkkinen K (eds) Strength training for sport. Blackwell Science, Oxford, pp 1–19

  • Galea V (1996) Changes in motor unit estimates with ageing. J Clin Neurophysiol 13:253–260

    CAS  PubMed  Google Scholar 

  • Grassi B, Cerretelli P, Narici MV, Marconi C (1991) Peak anaerobic power in master athletes. Eur J Appl Physiol 62:394–399

    Google Scholar 

  • Greig CA, Botella J, Young A (1993) The quadriceps strength of healthy elderly people remeasured after eight years. Muscle Nerve 16:6–10

    CAS  PubMed  Google Scholar 

  • Greig CA, Young A, Skelton DA, Pippet E, Butler FMM, Mahmud SM (1994) Exercise studies with elderly volunteers. Age Ageing 23:185–189

    CAS  PubMed  Google Scholar 

  • Grimby G, Saltin B (1983) The ageing muscle: a mini-review. Clin Physiol 3:209–218

    CAS  PubMed  Google Scholar 

  • Grimby G, Aniansson A, Hedberg M, Henning GB, Grangard U, Kvist H (1992) Training can improve muscle strength and endurance in 78- to 84-yr-old men. J Appl Physiol 73:2517–2523

    CAS  PubMed  Google Scholar 

  • Gruenewald DA, Matsumoto AM (2003) Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc 51:101–115

    Article  PubMed  Google Scholar 

  • Gutmann E, Hanzlìcovà V (1970) Effect of androgens no histochemical fibre type. Differentiation in the temporal muscle of the guinea-pig. Histochemistry 24:287–291

    CAS  PubMed  Google Scholar 

  • Häkkinen K, Häkkinen A (1991) Muscle cross-sectional area, force production and relaxation characteristics in women at different ages. Eur J Appl Physiol 62:410–414

    Google Scholar 

  • Häkkinen K, Häkkinen A (1995) Neuromuscular adaptations during intensive strength training in middle-aged and elderly males and females. Electromyogr Clin Neurophysiol 35:137–147

    PubMed  Google Scholar 

  • Häkkinen K, Pakarinen A (1994) Serum hormones and strength development during strength training in middle-aged and elderly males and females. Acta Physiol Scand 150:211–219

    PubMed  Google Scholar 

  • Häkkinen K, Alen M, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Malkia E, Kraemer WJ, Newton RU (1998a) Muscle CSA, force production, and activation of leg extensors during isometric and dynamic actions in middle-aged and elderly men and women. J Aging Phys Activ 6:232–247

    Google Scholar 

  • Häkkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, Gotshalk LA, Campbell WW, Evans WJ, Häkkinen A, Humphries BJ, Kraemer WJ (1998b) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol 53:B415–B423

    Google Scholar 

  • Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Malkia E, Kraemer WJ, Newton RU, Alen M (1998c) Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 84:1341–1349

    PubMed  Google Scholar 

  • Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ (2000) Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 83:51–62

    Google Scholar 

  • Häkkinen K, Kraemer WJ, Newton RU, Alen M (2001) Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand 171:51–62

    Article  PubMed  Google Scholar 

  • Hara Y, Findley TW, Sugimoto A, Hanayama K (1998) Muscle fiber conduction velocity (MFCV) after fatigue in elderly subjects. Electromyogr Clin Neurophysiol 38:427–435

    CAS  PubMed  Google Scholar 

  • Harman EA (1995) The measurement of human mechanical power. In: Maud PJ, Foster C (eds) Physiological assessment of human fitness. Human Kinetics, Champaign, Ill., pp 87–113

  • Harridge SDR, Young A (1998) Skeletal muscle. In: Pathy MJS (ed) Principles and practice of geriatric medicine. Wiley, London, pp 898–905

  • Harridge SDR, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjornsson M, Saltin B (1996) Whole muscle and single fibre contractile characteristics and myosin heavy chain isoforms in man. Pflugers Arch 432:913–920

    Article  CAS  PubMed  Google Scholar 

  • Harridge SDR, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjornsson M, Balsom PD, Saltin B (1998) Sprint training, in vitro and in vivo muscle function, and myosin heavy chain expression. J Appl Physiol 84:442–449

    Google Scholar 

  • Harridge SDR, Pearson SJ, Young A (1999a) Muscle power loss in old age: functional relevance and effects of training. In: Capodaglio P, Narici MV (eds) Physical activity in the elderly. Maugeri Foundation Books and PI-ME Press, Pavia, pp 123–137

  • Harridge SDR, Kryger A, Stensgaard A (1999b) Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve 22:831–839

    Article  CAS  PubMed  Google Scholar 

  • Hicks AL, Cupido CM, Martin J, Dent J (1992) Muscle excitation in elderly adults: the effects of training. Muscle Nerve 15:87–93

    CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Biol 126:136–195

    Google Scholar 

  • Höök P, Vidyasagar S, Larsson L (2001) Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. Am J Physiol 280:C782–C788

    Google Scholar 

  • Hortobágyi T, Tunnel D, Moody J, Beam S, De Vita P (2001) Low- or high-intensity strength training partially restores impaired quadriceps force accuracy and steadiness in aged adults. J Gerontol 56A:B38–B47

    Google Scholar 

  • Hunter GR, Treuth MS, Weinsier RL, Kekes-Szabo T, Kell SH, Roth DL, Nicholson C (1995) The effects of strength conditioning on older women’s ability to perform daily tasks. J Am Geriatr Soc 43:756–760

    CAS  PubMed  Google Scholar 

  • Hunter SK, Thompson MW, Ruell PA, Harmer AR, Thom JM, Gwinn TH, Adams RD (1999) Human skeletal sarcoplasmic reticulum Ca2+ uptake and muscle function with aging and strength training. J Appl Physiol 86:1858–1865

    Google Scholar 

  • Iannuzzi-Sucich M, Prestwood KM, Kenny AM (2002) Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol 57A:M772–M777

    Google Scholar 

  • Izquierdo M, Ibanez J, Gorostiaga E, Garrues M, Zuniga A, Anton A, Larrion JL, Häkkinen K (1999) Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scand 167:57–68

    CAS  PubMed  Google Scholar 

  • Izquierdo M, Häkkinen K, Ibanez J, Garrues M, Anton A, Zuniga A, Larrion JL, Gorostiaga E (2001) Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol 90:1497–1507

    CAS  PubMed  Google Scholar 

  • Jakobi JM, Rice CL (2002) Voluntary muscle activation varies with age and muscle group. J Appl Physiol 93:457–462

    Google Scholar 

  • Janssen I, Heymsfield SB, Wang Z, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 years. J Appl Physiol 89:81–88

    Google Scholar 

  • Jennekens FGI, Tomlinson BE, Walton J (1971) Histochemical aspects of five limb muscles in old age: an autopsy study. J Neurol Sci 14:259–276

    CAS  PubMed  Google Scholar 

  • Jones DA, Round JM (1990) Skeletal muscle in health and disease. A textbook of muscle physiology. Manchester University Press, Manchester, pp 23–25, 105–107

  • Jozsi AC, Campbell WW, Joseph L, Davey SL, Evans WJ (1999) Changes in power with resistance training in older and younger men and women. J Gerontol 54A:M591–M596

    Google Scholar 

  • Jubrias SA, Odderson IR, Esselman PC, Conley KE (1997) Decline in isokinetic force with age: muscle cross-sectional area and specific force. Pflugers Arch 434:246–253

    Article  CAS  PubMed  Google Scholar 

  • Judge JO, Underwood M, Gennosa T (1993) Exercise to improve gait velocity in older persons. Arch Phys Med Rehabil 74:400–406

    CAS  PubMed  Google Scholar 

  • Kallman DA, Plato CC, Tobin JD (1990) The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol 45:M82–M88

    CAS  Google Scholar 

  • Kamen G, Sison SV, DukeDu CC, Patten C (1995) Motor unit discharge behavior in older adults during maximal-effort contractions. J Appl Physiol 79:1908–1913

    Google Scholar 

  • Kawamura Y, Okazaki H, O’Brien PC, Dyck PJ (1977a) Lumbar motoneurons of man. I. Numbers and diameter histograms of alpha and gamma axons and ventral roots. J Neuropathol Exp Neurol 36:853–860

    CAS  PubMed  Google Scholar 

  • Kawamura Y, O’Brien PC, Okazaki H, Dyck PJ (1977b) Lumbar motoneurons of man. II: numbers and diameter distributions of large- and intermediate-diameter cytons in motoneuron columns of spinal cord of man. J Neuropathol Exp Neurol 36:861–870

    CAS  PubMed  Google Scholar 

  • Kent-Braun JA, Ng AV (1999) Specific strength and voluntary muscle activation in young and elderly women and men. J Appl Physiol 87:22–29

    Google Scholar 

  • Kent-Braun JA, Ng AV, Young K (2000) Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol 88:662–668

    Google Scholar 

  • Klitgaard H, Ausoni S, Damiani E (1989) Sarcoplasmic reticulum of human skeletal muscle: age-related changes and effect of training. Acta Physiol Scand 137:23–31

    CAS  PubMed  Google Scholar 

  • Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140:41–54

    CAS  PubMed  Google Scholar 

  • Kraemer WJ, Häkkinen K, Newton RU, Nindl BC, Volek JS, McCormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW, Putukian M, Evans WJ (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87:982–992

    CAS  PubMed  Google Scholar 

  • Krebs DE, Robbins CE, Lavine L, Mann RW (1998) Hip biomechanics during gait. J Orthop Sports Phys Ther 28:51–59

    CAS  PubMed  Google Scholar 

  • Kubo K, Kanehisa H, Miyatani M, Tachi M, Fukunaga T (2003) Effect of low-load resistance training on the tendon properties in middle-aged and elderly women Acta Physiol Scand 178:25–32

    Google Scholar 

  • Langlois JA, Visser M, Davidovic LS, Maggi S, Li G, Harris TB (1998) Hip fracture risk in older White men is associated with change in body weight from age 50 years to old age. Arch Intern Med 158:990–996

    Article  CAS  PubMed  Google Scholar 

  • Larsson L (1982) Physical training effects on muscle morphology in sedentary males at different ages. Med Sci Sports Exerc 14:203–206

    CAS  PubMed  Google Scholar 

  • Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46:451–456

    CAS  PubMed  Google Scholar 

  • Larsson L, Xiaopeng L, Frontera WR (1997) Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol 272:C638–C649

    CAS  PubMed  Google Scholar 

  • Levy DI, Young A, Skelton DA, Yeo AL (1994) Strength, power and functional ability. In: Passeri M (eds) Geriatrics ‘94. CIC Edizioni Internazionali, Rome, pp 85–93

  • Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol 50A (Spec No):11–16

    Google Scholar 

  • Lexell J (2000) Strength training and muscle hypertrophy in older men and women. Top Geriatr Rehabil 15:41–46

    Google Scholar 

  • Lexell J, Downham DJ (1991) The occurrence of fibre type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol 81:377–381

    CAS  PubMed  Google Scholar 

  • Lexell J, Henriksson-Larsén K, Winblad B, Sjostrom M (1983) Distribution of different fiber types in human skeletal muscles. 3. Effects of aging studied in whole muscle cross sections. Muscle Nerve 6:588–595

    CAS  PubMed  Google Scholar 

  • Lexell J, Taylor AW, Sjostrom M (1988) What is the cause of the aging atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–283

    CAS  PubMed  Google Scholar 

  • Lexell J, Downham DJ, Larsson Y, Bruhn E, Morsing B (1995) Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scand J Med Sci Sports 5:329–341

    CAS  PubMed  Google Scholar 

  • Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA, Hurley BF (1997) Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol 83:1581–1587

    Google Scholar 

  • Lynch NA, Metter EJ, Lindle RS, Fozard JL, Tobin JD, Roy TA, Fleg JL, Hurley BF (1999) Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol 86:188–194

    Google Scholar 

  • Macaluso A, De Vito G (2003) Comparison between young and older women in explosive power output and its determinants during a single leg-press action after optimisation of load. Eur J Appl Physiol DOI 10.1007/s00421-003-0866-7

  • Macaluso A, De Vito G, Felici F, Nimmo MA (2000) Electromyogram changes during sustained contraction after resistance training in women in their 3rd and 8th decades. Eur J Appl Physiol 82:418–424

    Google Scholar 

  • Macaluso A, Nimmo MA, Foster JE, Cockburn M, McMillan NC, De Vito G (2002) Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve 25:858–863

    Article  PubMed  Google Scholar 

  • Macaluso A, Young A, Gibb KS, Rowe DA, De Vito G (2003) Cycling as a novel approach to resistance training increases muscle strength, power and selected functional abilities in healthy older women. J Appl Physiol DOI 10.1152/japplphysiol.00416.2003

  • Maganaris CN (2001) In vivo tendon mechanical properties in young adults and healthy elderly [Online]. http://www.mmu.ac.uk/c-a/exspsci/research/invivo.htm

  • McArdle WD, Katch FI, Katch VL (1996) Exercise physiology. Williams and Wilkins, Baltimore, Md., pp 350, 393

  • McCafferty WB, Horvath SM (1977) Specificity of exercise and specificity of training: a subcellular review. Res Q 48:358–371

    CAS  PubMed  Google Scholar 

  • McCartney N, Hicks AL, Martin J, Webber CE (1996) A longitudinal trial of weight training in the elderly: continued improvements in year 2. J Geront 51A:B425–B433

    Google Scholar 

  • McComas AJ (1998) Motor units: how many, how large, what kind? J Electromyogr Kinesiol 8:391–402

    Article  CAS  PubMed  Google Scholar 

  • Meltzer DE (1994) Age dependence of Olympic weightlifting ability. Med Sci Sports Exerc 26:1053–1067

    CAS  PubMed  Google Scholar 

  • Merletti R, Lo Conte LR, Cisari C, Actis MV (1992) Age related changes in surface myoelectric signals. Scand J Rehabil Med 24:25–36

    CAS  PubMed  Google Scholar 

  • Merletti R, Farina D, Gazzoni M, Schieroni MP (2002) Effect of age on muscle functions investigated with surface electromyography. Muscle Nerve 25:65–76

    Article  PubMed  Google Scholar 

  • Metter EJ, Conwit R, Tobin J, Fozard JL (1997) Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol 52:B267–B276

    CAS  Google Scholar 

  • Metter EJ, Conwit R, Metter B, Pacheco T, Tobin J (1998) The relationship of peripheral motor nerve conduction velocity to age-associated loss of grip strength. Aging Clin Exp Res 10:471–478

    CAS  Google Scholar 

  • Mitsipoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122

    CAS  PubMed  Google Scholar 

  • Miyatani M, Kanehisa H, Masuo Y, Masamitsu I, Fukunaga T (2001) Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol 91:386–394

    Google Scholar 

  • Moore DH (1975) A study of age group track and field records to relate age and running speed. Nature 253:264–265

    PubMed  Google Scholar 

  • Morgan M, Phillips JG, Bradshaw JL, Mattingley JB, Iansek R, Bradshaw JA (1994) Age related motor slowness: simply strategic? J Gerontol 49A:M133–M139

    Google Scholar 

  • Morganti CM, Nelson ME, Fiatarone MA, Dallal GE, Economos CD, Crawford BM, Evans WJ (1995) Strength improvements with 1 yr of progressive resistance training in older women. Med Sci Sports Exerc 27:906–912

    CAS  PubMed  Google Scholar 

  • Moritani T, deVries HA (1980) Potential for gross muscle hypertrophy in older men. J Gerontol 35A:672–682

    Google Scholar 

  • Narici MV (1999) Effect of ageing on muscle contractile properties. In: Capodaglio P, Narici MV (eds) Physical Activity in the elderly. Maugeri Foundation Books and PI-ME Press, Pavia, pp 61–67

  • Narici MV (2001) Structural and functional adaptations of human skeletal muscle to disuse and ageing [Online]. http://www.mmu.ac.uk/c-a/exspsci/research/structural.htm

  • Narici MV, Bordini M, Cerretelli P (1991) Effect of aging on human adductor pollicis muscle function. J Appl Physiol 71:1277–1281

    Google Scholar 

  • Narici MV, Landoni L, Minetti AE (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol 65:438–444

    CAS  Google Scholar 

  • Narici MV, Susta D, Ciuffreda L, Ferri A, Scaglioni G, Capodaglio P (1999) Changes in human gastrocnemius muscle architecture with ageing. J Physiol (Lond) 518P:87

    Google Scholar 

  • Norris AH, Shock NW, Wagman IH (1953) Age changes in the maximum conduction velocity of motor fibers of human ulnar nerves. J Appl Physiol 5:589–593

    PubMed  Google Scholar 

  • O’Toole ML (1997) Do older individuals need more than usual physical activities to maintain muscle strength and function? J Am Geriatr Soc 45:1534–1535

    CAS  PubMed  Google Scholar 

  • Onambele NG, Skelton DA, Bruce SA, Woledge RC (2001) Follow-up study of the benefits of hormone replacement therapy on isometric muscle strength of adductor pollicis in postmenopausal women. Clin Sci 100:421–422

    CAS  PubMed  Google Scholar 

  • Overend TJ, Cunningham DA, Kramer JF, Lefcoe MS, Paterson DH (1992a) Knee extensor and knee flexors strength: cross-sectional area ratios in young and elderly men. J Gerontol 47A:M204–M210

    Google Scholar 

  • Overend TJ, Cunningham DA, Paterson DH, Lefcoe MS (1992b) Thigh composition in young and elderly men determined by computed tomography. Clin Physiol 12:629–640

    PubMed  Google Scholar 

  • Patten C, Kamen G (2000) Adaptations in motor unit discharge activity with force control training in young and older human adults. Eur J Appl Physiol 83:128–143

    Google Scholar 

  • Patten C, Kamen G, Rowland DM (2001) Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve 24:542–550

    Article  CAS  PubMed  Google Scholar 

  • Pearson SJ, Harridge SDR, Grieve DW, Young A, Woledge RC (2001) A variable inertial system for measuring the contractile properties of human muscle. Med Sci Sports Exerc 33:2072–2076

    CAS  PubMed  Google Scholar 

  • Pearson SJ, Young A, Macaluso A, De Vito G, Nimmo MA, Cobbold M, Harridge SDR (2002) Muscle function in elite master weightlifters. Med Sci Sports Exerc 34:1199–1206

    PubMed  Google Scholar 

  • Perrine JJ (1986) The biophysics of maximal muscle power outputs: methods and problems of measurement. In: Jones NL, McCartney N, McComas AJ (eds) Human muscle power. Human Kinetics, Champaign, Ill., pp 15–25

  • Phillips SK, Bruce SA, Newton D, Woledge RC (1992) The weakness of old age is not due to failure of muscle activation. J Gerontol 47A:M45–M49

    Google Scholar 

  • Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC (1993) Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci 84:95–98

    CAS  PubMed  Google Scholar 

  • Pruitt L, Taaffe DR, Marcus R (1995) Effects of a one year high intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 10:1788–1795

    CAS  PubMed  Google Scholar 

  • Pyka G, Lindenberger E, Charette SL, Markus R (1994) Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. J Gerontol 49A:M22–M27

    Google Scholar 

  • Rantanen T, Avela J (1997b) Leg extension power and walking speed in very old people living independently. J Gerontol 52A:M225–M231

    Google Scholar 

  • Rantanen T, Era P, Heikkinen E (1997a) Physical activity and the changes in maximal isometric strength in men and women from the ages of 75 to 80 years. J Am Geriatr Soc 45:1439–1445

    CAS  PubMed  Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2003a) Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol (Lond) 548:971–981

    Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2003b) Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 28:74–81

    Article  PubMed  Google Scholar 

  • Rice CL (2000) Muscle function at the motor unit level: consequences of aging. Top Geriatr Rehabil 15:70–82

    Google Scholar 

  • Rice CL, Cunningham DA, Paterson DH, Lefcoe MS (1989) Arm and leg composition determined by computed tomography in young and elderly men. Clin Physiol 9:207–220

    CAS  PubMed  Google Scholar 

  • Rooks DS, Kiel DP, Parsons C, Hayes WC (1997) Self-paced resistance training and walking exercise in community-dwelling older adults: effects on neuromotor performance. J Gerontol 52A:M161–M168

    Google Scholar 

  • Roos MR, Rice CL, Connelly DM, Vandervoort AA (1999) Quadriceps muscle strength, contractile properties and motor unit firing rates in young and old men. Muscle Nerve 22:1094–1103

    Article  CAS  PubMed  Google Scholar 

  • Rooyackers OE, Nair KS (1997) Hormonal regulation of human muscle protein metabolism. Annu Rev Nutr 17:457–485

    Article  CAS  PubMed  Google Scholar 

  • Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L (1990) Effects of human growth hormone in men over 60 years old. N Engl J Med 323:1–6

    CAS  PubMed  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20:S135–S145

    CAS  PubMed  Google Scholar 

  • Sargeant AJ (1994) Human power output and muscle fatigue. Int J Sports Med 15:116–121

    PubMed  Google Scholar 

  • Scaglioni G, Ferri A, Minetti AE, Martin A, Van Hoecke J, Capodaglio P, Sartorio A, Narici MV (2002) Plantar flexors activation capacity and H reflex in older adults: adaptations to strength training. J Appl Physiol 92:2292–2302

    Google Scholar 

  • Sharman MJ, Newton RU, Triplett-McBride T, McGuigan MRM, McBride JM, Häkkinen A, Häkkinen K, Kraemer WJ (2001) Changes in myosin heavy chain composition with heavy resistance training in 60- to 75-year old men and women. Eur J Appl Physiol 84:127–132

    Google Scholar 

  • Sherrington C, Lord SR (1997) Home exercise to improve strength and walking velocity after hip fracture: a randomized controlled trial. Arch Phys Med Rehabil 78:208–212

    CAS  PubMed  Google Scholar 

  • Sherrington CS (1929) Some functional problems attaching to convergence. Proc R Soc Lond 105:332–362

    Google Scholar 

  • Short KR, Nair KS (1999) Mechanisms of sarcopenia of aging. J Endocrinol Invest 22:95–105

    CAS  PubMed  Google Scholar 

  • Sinaki M, McPhee MC, Hodgson SF, Merritt JM, Offord KP (1986) Relationship between bone mineral density of spine and strength of back extensors in healthy postmenopausal women. Mayo Clinic Proc 61:116–122

    CAS  Google Scholar 

  • Skelton DA, McLaughlin AW (1996) Training functional ability in old age. Physiotherapy 82:159–167

    Google Scholar 

  • Skelton DA, Greig CA, Davies JM, Young A (1994) Power and related functional ability of healthy people aged 65–89 years. Age Ageing 23:371–377

    CAS  PubMed  Google Scholar 

  • Skelton DA, Young A, Greig CA, Malbut KE (1995) Effects of resistance training on strength, power, and selected functional abilities of women aged 75 and older. J Am Geriatr Soc 43:1081–1087

    Google Scholar 

  • Skelton DA, Phillips SK, Bruce SA, Naylor CH, Woledge RC (1999) Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausal women. Clin Sci 96:357–364

    CAS  PubMed  Google Scholar 

  • Solomonow M, Baratta R, Bernardi M, Zhou M, Lu Y, Zhu M, Acierno S (1994) Surface and wire EMG crosstalk in neighbouring muscles. J Electromyogr Kinesiol 4:131–142

    Google Scholar 

  • Suzuki T, Bean JF, Fielding RA (2001) Muscle power of the ankle flexors predicts functional performance in community dwelling older women. J Am Geriatr Soc 49:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Taaffe DR, Pruitt L, Reim J, Hintz RL, Butterfield GE, Hoffman AR, Marcus R (1994) Effect of recombinant human growth hormone on the muscle strength response to resistive exercise in elderly men. J Clin Endocrinol Metab 79:1361–1366

    CAS  PubMed  Google Scholar 

  • Taaffe DR, Luz Villa M, Delay R, Marcus R (1995) Maximal muscle strength of elderly women is not influenced by oestrogen status. Age Ageing 24:329–333

    CAS  PubMed  Google Scholar 

  • Taaffe DR, Jin IH, Vu TH, Hoffman AR, Marcus R (1996) Lack of effect of recombinant human growth hormone (GH) on muscle morphology and GH-insulin-like growth factor expression in resistance trained elderly men. J Clin Endocrinol Metab 81:421–425

    CAS  PubMed  Google Scholar 

  • Taaffe DR, Duret C, Wheeler S, Marcus R (1999) Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc 47:1208–1214

    CAS  PubMed  Google Scholar 

  • Tenover JS (1992) Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab 75:1092–1098

    CAS  PubMed  Google Scholar 

  • Thomas M, Fiatarone MA, Fielding RA (1996) Leg power in young women: relationship to body composition, strength, and function. Med Sci Sports Exerc 28:1321–1326

    CAS  PubMed  Google Scholar 

  • Tinetti ME, Speechley M, Ginter SF (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–1707

    CAS  PubMed  Google Scholar 

  • Tomlinson BE, Irving D (1977) The numbers of limb motor neurons in the human lumbosacral cord throughout life. J Neurol Sci 34:213–219

    CAS  PubMed  Google Scholar 

  • Tomonaga M (1977) Histochemical and ultrastructural changes in senile human skeletal muscle. J Am Geriatr Soc 25:125–131

    CAS  PubMed  Google Scholar 

  • Tracy BL, Ivey FM, Hurlbut D, Martel GF, Lemmer JT, Siegel EL, Metter EJ, Fozard JL, Fleg JL, Hurley BF (1999) Muscle quality. II. Effects of strength training in 65- to 75-yr-old men and women. J Appl Physiol 86:195–201

    CAS  PubMed  Google Scholar 

  • Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D (2000) Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol 89:143–152

    CAS  PubMed  Google Scholar 

  • Trappe S, Godard M, Gallagher D, Carroli C, Rowden G, Porter D (2001) Resistance training improves single muscle fiber contractile function in older women. Am J Physiol 281:C398–C406

    CAS  Google Scholar 

  • Trappe S, Williamson D, Godard M (2002) Maintenance of whole muscle strength and size following resistance training in older men. J Gerontol 57A:B138–B143

    Google Scholar 

  • Tzankoff SP, Norris AH (1977) Effect of muscle mass decrease on age related BMR changes. J Appl Physiol 43:1001–1006

    Google Scholar 

  • Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe DR, Ferrando A (1995) Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 269:E820–E826

    CAS  PubMed  Google Scholar 

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol (Lond) 513:295–305

    Google Scholar 

  • Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25:17–25

    Article  CAS  PubMed  Google Scholar 

  • Vandervoort AA, McComas AJ (1986) Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol 61:361–367

    Google Scholar 

  • Wang FC, De Pasqua V, Delwaide PJ (1999) Age-related changes in fastest and slowest conducting axons of thenar motor units. Muscle Nerve 22:1022–1029

    Article  CAS  PubMed  Google Scholar 

  • Welle S, Thornton C, Statt M, McHenry B (1996a) Growth hormone increases muscle mass and strength but does not rejuvenate myofibrillar protein synthesis in healthy subjects over 60 years old. J Clin Endocrinol Metab 81:3239–3243

    CAS  PubMed  Google Scholar 

  • Welle S, Totterman S, Thornton C (1996b) Effect of age on muscle hypertrophy induced by resistance training. J Gerontol 51A:M270–M275

    Google Scholar 

  • Welle S, Bhatt K, Thornton CA (1999) Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA. J Appl Physiol 86:1220–1225

    Google Scholar 

  • Viitasalo JT, Era P, Leskinen AL, Heikkinen E (1985) Muscular strength profiles and anthropometry in random samples of men aged 31–35, 51–55 and 71–75 years. Ergonomics 28:1563–1574

    Google Scholar 

  • Vogel HG (1991) Species differences of elastic and collagenous tissue – influence of maturation and age. Mech Ageing Dev 57:15–24

    Article  CAS  PubMed  Google Scholar 

  • Williamson D, Godard M, Porter D, Costill D, Trappe S (2000) Progressive resistance training reduces myosin heavy chain coexpression in single muscle fibres from older men. J Appl Physiol 88:627–633

    CAS  PubMed  Google Scholar 

  • Winegard KJ, Hicks AL, Sale DG, Vandervoort AA (1996) A 12-year follow-up study of ankle muscle function in older adults. J Gerontol 51A:B202–B207

    Google Scholar 

  • Wolfson L, Judge J, Whipple R, King M (1995) Strength is a major factor in balance, gait, and the occurrence of falls. J Gerontol 50A (Spec No):64–67

    Google Scholar 

  • Yarasheski KE, Campbell JA, Smith K, Rennie MJ, Holloszy JO, Bier DM (1992) Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol 262:E261–E267

    CAS  PubMed  Google Scholar 

  • Yarasheski KE, Zachwieja JJ, Campbell JA, Bier DM (1995) Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am J Physiol 268:E268–E276

    CAS  PubMed  Google Scholar 

  • Young A, Stokes M, Crowe M (1984) Size and strength of the quadriceps muscles of old and young women. Eur J Clin Invest 14:282–287

    CAS  PubMed  Google Scholar 

  • Young A, Stokes M, Crowe M (1985) The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5:145–154

    CAS  PubMed  Google Scholar 

  • Yue GH, Ranganathan VK, Siemionov V, Liu JZ, Sahgal V (1999) Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol 54A:249–253

    Google Scholar 

  • Zamparo P, Antonutto G, Capelli C, di Prampero PE (2000) Effects of different after-loads and knee angles on maximal explosive power of the lower limbs in humans. Eur J Appl Physiol 82:381–390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Macaluso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macaluso, A., De Vito, G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 91, 450–472 (2004). https://doi.org/10.1007/s00421-003-0991-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0991-3

Keywords

Navigation