Skip to main content
Log in

Proteolysis activation and proteome alterations in murine skeletal muscle submitted to 1 week of hindlimb suspension

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the temporal involvement of different proteolytic systems and muscle proteome changes during experimental disuse atrophy (up to 1 week hindlimb suspension, HS) in murine gastrocnemius muscle. The results showed that proteolysis, cytoprotection mechanisms and signs of cellular infiltration occurred very early. After 1 day of HS, signals of lysosomal activation, rather than programmed cell death (apoptosis), seem to trigger protein breakdown in the whole skeletal muscle. Moreover, the ubiquitin-proteasome pathway remained elevated later whereas all other proteolytic parameters returned to control values when atrophy was fully established. Using proteomics, evidence is provided for metabolic alterations toward glycolysis and for cytoskeleton remodelling suggestive of reduced capacity for force generation. Overall, our data highlight an early and coordinated time-dependent activation of proteolysis, which explains the global proteome alterations observed in gastrocnemius under atrophic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Appell HA, Ascensão A, Natsis K, Michael J, Duarte JA (2004) Signs of necrosis and inflammation do not support the concept of apoptosis as the predominant mechanism during early atrophy in immobilized muscle. Basic Appl Myol 14:191–196

    Google Scholar 

  • Attaix D, Mosoni L, Dardevet D, Combaret L, Mirand PP, Grizard J (2005) Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int J Biochem Cell Biol 37:1962–1973

    Article  CAS  PubMed  Google Scholar 

  • Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D (2005) Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 37:2098–2114

    Article  CAS  PubMed  Google Scholar 

  • Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    CAS  PubMed  Google Scholar 

  • Berthon P, Duguez S, Favier FB, Amirouche A, Feasson L, Vico L, Denis C, Freyssenet D (2007) Regulation of ubiquitin-proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading. Pflugers Arch 454:625–633

    Article  CAS  PubMed  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Booth FW, Seider MJ (1979) Early change in skeletal muscle protein synthesis after limb immobilization of rats. J Appl Physiol 47:974–977

    CAS  PubMed  Google Scholar 

  • Cai D, Lee KK, Li M, Tang MK, Chan KM (2004) Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Arch Biochem Biophys 425:42–50

    Article  CAS  PubMed  Google Scholar 

  • Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19:7860–7869

    CAS  PubMed  Google Scholar 

  • Dreger M (2003) Proteome analysis at the level of subcellular structures. Eur J Biochem 270:589–599

    Article  CAS  PubMed  Google Scholar 

  • Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    CAS  PubMed  Google Scholar 

  • Duan X, Berthiaume F, Yarmush D, Yarmush ML (2006) Proteomic analysis of altered protein expression in skeletal muscle of rats in a hypermetabolic state induced by burn sepsis. Biochem J 397:149–158

    Article  CAS  PubMed  Google Scholar 

  • Edgerton VR, Roy RR, Allen DL, Monti RJ (2002) Adaptations in skeletal muscle disuse or decreased-use atrophy. Am J Phys Med Rehabil 81:S127–147

    Article  PubMed  Google Scholar 

  • Enns DL, Raastad T, Ugelstad I, Belcastro AN (2007) Calpain/calpastatin activities and substrate depletion patterns during hindlimb unweighting and reweighting in skeletal muscle. Eur J Appl Physiol 100:445–455

    Article  CAS  PubMed  Google Scholar 

  • Ferreira R, Vitorino R, Neuparth MJ, Appell HJ, Amado F, Duarte JA (2007) Cellular patterns of the atrophic response in murine soleus and gastrocnemius muscles submitted to simulated weightlessness. Eur J Appl Physiol 101:331–340

    Article  PubMed  Google Scholar 

  • Fluck M, Schmutz S, Wittwer M, Hoppeler H, Desplanches D (2005) Transcriptional reprogramming during reloading of atrophied rat soleus muscle. Am J Physiol Regul Integr Comp Physiol 289:R4–14

    PubMed  Google Scholar 

  • Foster LJ, de Hoog CL, Zhang Y, Xie X, Mootha VK, Mann M (2006) A mammalian organelle map by protein correlation profiling. Cell 125:187–199

    Article  CAS  PubMed  Google Scholar 

  • Furuno K, Goodman MN, Goldberg AL (1990) Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem 265:8550–8557

    CAS  PubMed  Google Scholar 

  • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984

    CAS  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    CAS  PubMed  Google Scholar 

  • Hunter RB, Mitchell-Felton H, Essig DA, Kandarian SC (2001) Expression of endoplasmic reticulum stress proteins during skeletal muscle disuse atrophy. Am J Physiol Cell Physiol 281:C1285–1290

    CAS  PubMed  Google Scholar 

  • Ingalls CP, Warren GL, Armstrong RB (1999) Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading. J Appl Physiol 87:386–390

    CAS  PubMed  Google Scholar 

  • Isfort RJ, Wang F, Greis KD, Sun Y, Keough TW, Bodine SC, Anderson NL (2002) Proteomic analysis of rat soleus and tibialis anterior muscle following immobilization. J Chromatogr B Analyt Technol Biomed Life Sci 769:323–332

    Article  CAS  PubMed  Google Scholar 

  • Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–843

    Article  CAS  PubMed  Google Scholar 

  • Kandarian SC, Jackman RW (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33:155–165

    Article  CAS  PubMed  Google Scholar 

  • Krawiec BJ, Frost RA, Vary TC, Jefferson LS, Lang CH (2005) Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. Am J Physiol Endocrinol Metab 289:E969–980

    Article  CAS  PubMed  Google Scholar 

  • Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129:227S–237S

    CAS  PubMed  Google Scholar 

  • McDonald KS, Fitts RH (1995) Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity. J Appl Physiol 79:1796–1802

    CAS  PubMed  Google Scholar 

  • Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367–1377

    Article  PubMed  Google Scholar 

  • Moriggi M, Cassano P, Vasso M, Capitanio D, Fania C, Musicco C, Pesce V, Gadaleta MN, Gelfi C (2008) A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-l-carnitine supplementation. Proteomics 8:3588–3604

    Article  CAS  PubMed  Google Scholar 

  • Piec I, Listrat A, Alliot J, Chambon C, Taylor RG, Bechet D (2005) Differential proteome analysis of aging in rat skeletal muscle. FASEB J 19:1143–1145

    CAS  PubMed  Google Scholar 

  • Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–344

    CAS  PubMed  Google Scholar 

  • Rabilloud T (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19:758–760

    Article  CAS  PubMed  Google Scholar 

  • Raj DA, Booker TS, Belcastro AN (1998) Striated muscle calcium-stimulated cysteine protease (calpain-like) activity promotes myeloperoxidase activity with exercise. Pflugers Arch 435:804–809

    Article  CAS  PubMed  Google Scholar 

  • Reid MB (2005) Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 288:R1423–1431

    CAS  PubMed  Google Scholar 

  • Siu PM, Alway SE (2005) Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol 565:309–323

    Article  CAS  PubMed  Google Scholar 

  • Smith IJ, Dodd SL (2007) Calpain activation causes a proteasome-dependent increase in protein degradation and inhibits the Akt signalling pathway in rat diaphragm muscle. Exp Physiol 92:561–573

    Article  CAS  PubMed  Google Scholar 

  • Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271:26690–26697

    Article  CAS  PubMed  Google Scholar 

  • St-Amand J, Okamura K, Matsumoto K, Shimizu S, Sogawa Y (2001) Characterization of control and immobilized skeletal muscle: an overview from genetic engineering. FASEB J 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • Sultan KR, Dittrich BT, Pette D (2000) Calpain activity in fast, slow, transforming, and regenerating skeletal muscles of rat. Am J Physiol Cell Physiol 279:C639–647

    CAS  PubMed  Google Scholar 

  • Taillandier D, Aurousseau E, Meynial-Denis D, Bechet D, Ferrara M, Cottin P, Ducastaing A, Bigard X, Guezennec CY, Schmid HP et al (1996) Coordinate activation of lysosomal, Ca2+-activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochem J 316(Pt 1):65–72

    CAS  PubMed  Google Scholar 

  • Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I (2003) Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 23:9127–9135

    Article  CAS  PubMed  Google Scholar 

  • Vermaelen M, Sirvent P, Raynaud F, Astier C, Mercier J, Lacampagne A, Cazorla O (2007) Differential localization of autolyzed calpains 1 and 2 in slow and fast skeletal muscles in the early phase of atrophy. Am J Physiol Cell Physiol 292:C1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Vitorino R, Ferreira R, Neuparth M, Guedes S, Williams J, Tomer KB, Domingues PM, Appell HJ, Duarte JA, Amado FM (2007) Subcellular proteomics of mice gastrocnemius and soleus muscles. Anal Biochem 366:156–169

    Article  CAS  PubMed  Google Scholar 

  • Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mrs Celeste Resende for her skilled technical assistance. This work was supported by the “Fundação para a Ciência e Tecnologia” (FCT, grants SFRH/BPD/24158/2005 and POCTI/DES/58772/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, R., Vitorino, R., Neuparth, M.J. et al. Proteolysis activation and proteome alterations in murine skeletal muscle submitted to 1 week of hindlimb suspension. Eur J Appl Physiol 107, 553–563 (2009). https://doi.org/10.1007/s00421-009-1151-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1151-1

Keywords

Navigation