Skip to main content
Log in

Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The protective effect of short-term creatine supplementation (CrS) upon markers of strenuous contractile activity-induced damage in human and rat skeletal muscles was investigated. Eight Ironman triathletes were randomized into the placebo (Pl; n = 4) and creatine-supplemented (CrS; n = 4) groups. Five days prior to the Ironman competition, the CrS group received creatine monohydrate (20 g day−1) plus maltodextrin (50 g) divided in two equal doses. The Pl group received maltodextrin (50 g day−1) only. The effect of CrS (5 g day−1/kg body weight for 5 days) was also evaluated in a protocol of strenuous contractile activity induced by electrical stimulation in rats. Blood samples were collected before and 36 and 60 h after the competition and were used to determine plasma activities of creatine kinase (CK), lactate dehydrogenase (LDH), aldolase (ALD), glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), and C-reactive protein (CRP) level. In rats, plasma activities of CK and LDH, muscle vascular permeability (MVP) using Evans blue dye, muscle force and fatigue were evaluated. Activities of CK, ALD, LDH, GOT, GTP, and levels of CRP were increased in the Pl group after the competition as compared to basal values. CrS decreased plasma activities of CK, LDH, and ALD, and prevented the rise of GOT and GPT plasma activities. In rats, CrS delayed the fatigue, preserved the force, and prevented the rise of LDH and CK plasma activities and MVP in the gastrocnemius muscle. CrS presented a protective effect on muscle injury induced by strenuous contractile activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong RB, Ogilvie RW, Schwane JA (1983) Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 54(1):80–93

    CAS  PubMed  Google Scholar 

  • Ashton T, Rowlands CC, Jones E, Young IS, Jackson SK, Davies B, Peters JR (1998) Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol Occup Physiol 77(6):498–502

    Article  CAS  PubMed  Google Scholar 

  • Balsom PD, Söderlund K, Sjödin B, Ekblom B (1995) Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand 154(3):303–310

    Article  CAS  PubMed  Google Scholar 

  • Bassit RA, Curi R, Costa Rosa LF (2008) Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids 35(2):425–431. doi:10.1007/s00726-007-0582-4

    Article  CAS  PubMed  Google Scholar 

  • Brault JJ, Terjung RL (2003) Creatine uptake and creatine transporter expression among rat skeletal muscle fiber types. Am J Physiol Cell Physiol 284(6):C1481–C1489

    CAS  PubMed  Google Scholar 

  • Casey A, Greenhaff PL (2000) Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance? Am J Clin Nutr 72(2 Suppl):607S–617S

    CAS  PubMed  Google Scholar 

  • Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL (1996) Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 271(1 Pt 1):E31–E37

    CAS  PubMed  Google Scholar 

  • Cooke MB, Rybalka E, Williams AD, Cribb PJ, Hayes A (2009) Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr 6:13

    Article  PubMed  Google Scholar 

  • Demant TW, Rhodes EC (1999) Effects of creatine supplementation on exercise performance. Sports Med 28:49–60

    Article  CAS  PubMed  Google Scholar 

  • Egermann M, Brocai D, Lill CA, Schmitt H (2003) Analysis of injuries in long-distance triathletes. Int J Sports Med 24(4):271–276. doi:10.1055/s-2003-39498

    Article  CAS  PubMed  Google Scholar 

  • Fellmann N, Sagnol M, Bedu M et al (1988) Enzymatic and hormonal responses following a 24 h endurance run and a 10 h triathlon race. Eur J Appl Physiol Occup Physiol 57(5):545–553

    Article  CAS  PubMed  Google Scholar 

  • Frankiewicz-Jóźko A, Faff J, Sieradzan-Gabelska B (1996) Changes in concentrations of tissue free radical marker and serum creatine kinase during the post-exercise period in rats. Eur J Appl Physiol Occup Physiol 74(5):470–474

    Article  PubMed  Google Scholar 

  • Fridén J, Lieber RL (2001) Serum creatine kinase level is a poor predictor of muscle function after injury. Scand J Med Sci Sports 11(2):126–127

    Article  PubMed  Google Scholar 

  • Gosling CM, Gabbe BJ, Forbes AB (2008) Triathlon related musculoskeletal injuries: the status of injury prevention knowledge. J Sci Med Sport 11(4):396–406. doi:10.1016/j.jsams.2007.07.009

    Article  PubMed  Google Scholar 

  • Hausswirth C, Lehénaff D (2001) Physiological demands of running during long distance runs and triathlons. Sports Med 31(9):679–689

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Wilkerson DP, Fulford J (2009) Influence of dietary creatine supplementation on muscle phosphocreatine kinetics during knee-extensor exercise in humans. Am J Physiol Regul Integr Comp Physiol 296(4):R1078–R1087. doi:10.1152/ajpregu.90896.2008

    CAS  PubMed  Google Scholar 

  • Kaptanoglu E, Okutan O, Akbiyik F, Solaroglu I, Kilinc A, Beskonakli E (2004) Correlation of injury severity and tissue Evans blue content, lipid peroxidation and clinical evaluation in acute spinal cord injury in rats. J Clin Neurosci 11(8):879–885. doi:10.1016/j.jocn.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  • Karnes JL, Burton HW (2002) Continuous therapeutic ultrasound accelerates repair of contraction-induced skeletal muscle damage in rats. Arch Phys Med Rehabil 83(1):1–4. doi:10.1053/apmr.2002.26254

    Article  PubMed  Google Scholar 

  • Kelly MK, Wicker RJ, Barstow TJ, Harms CA (2009) Effects of N-acetylcysteine on respiratory muscle fatigue during heavy exercise. Respir Physiol Neurobiol 165(1):67–72. doi:10.1016/j.resp.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  • Kilduff LP, Vidakovic P, Cooney G et al (2002) Effects of creatine on isometric bench-press performance in resistance-trained humans. Med Sci Sports Exerc 34(7):1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Koller A, Mair J, Schobersberger W et al (1998) Effects of prolonged strenuous endurance exercise on plasma myosin heavy chain fragments and other muscular proteins. Cycling vs running. J Sports Med Phys Fitness 38(1):10–17

    CAS  PubMed  Google Scholar 

  • Koltzenburg M, Lewin G, McMahon S (1990) Increase of blood flow in skin and spinal cord following activation of small diameter primary afferents. Brain Res 509(1):145–149

    Article  CAS  PubMed  Google Scholar 

  • Korkia PK, Tunstall-Pedoe DS, Maffulli N (1994) An epidemiological investigation of training and injury patterns in British triathletes. Br J Sports Med 28(3):191–196. doi:10.1136/bjsm.28.3.191

    Article  CAS  PubMed  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290(1):47–52. doi:10.1006/bbrc.2001.6164

    Article  CAS  PubMed  Google Scholar 

  • Lovering RM, Roche JA, Bloch RJ, De Deyne PG (2007) Recovery of function in skeletal muscle following 2 different contraction-induced injuries. Arch Phys Med Rehabil 88(5):617–625. doi:10.1016/j.apmr.2007.02.010

    Article  PubMed  Google Scholar 

  • Mackey AL, Bojsen-Moller J, Qvortrup K et al (2008) Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. J Appl Physiol 105(5):1620–1627. doi:10.1152/japplphysiol.90952.2008

    Article  PubMed  Google Scholar 

  • MacPherson PCD, Schork MA, Faulkner JA (1996) Contraction-induced injury to single fiber segments from fast and slow muscles of rats by single stretches. Am J Physiol Cell Physiol 271:C1438–C1446

    CAS  Google Scholar 

  • Malm C, Nyberg P, Engstrom M, Sjodin B, Lenkei R, Ekblom B, Lundberg I (2000) Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol 529(Pt 1):243–262

    Article  CAS  PubMed  Google Scholar 

  • Manfredi TG, Fielding RA, O’Reilly KP, Meredith CN, Lee HY, Evans WJ (1991) Plasma creatine kinase activity and exercise-induced muscle damage in older men. Med Sci Sports Exerc 23(9):1028–1034

    CAS  PubMed  Google Scholar 

  • Margaritis I, Tessier F, Verdera F, Bermon S, Marconnet P (1999) Muscle enzyme release does not predict muscle function impairment after triathlon. J Sports Med Phys Fitness 39(2):133–139

    CAS  PubMed  Google Scholar 

  • Maughan RJ, Donnelly AE, Gleeson M, Whiting PH, Walker KA, Clough PJ (1989) Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle Nerve 12(4):332–336

    Article  CAS  PubMed  Google Scholar 

  • Neubauer O, König D, Wagner KH (2008) Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. Eur J Appl Physiol 104(3):417–426. doi:10.1007/s00421-008-0787-6

    Article  PubMed  Google Scholar 

  • Newham DJ, McPhail G, Mills KR, Edwards RH (1983) Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci 61:109–122

    Article  CAS  PubMed  Google Scholar 

  • Noakes TD (1987) Effect of exercise on serum enzyme activities in humans. Sports Med 4:245–267

    Article  CAS  PubMed  Google Scholar 

  • Ozkan O, Duman O, Haspolat S et al (2005) Effect of systemic creatine monohydrate supplementation on denervated muscle during reinnervation: experimental study in the rat. J Reconstr Microsurg 21(8):573–579. doi:10.1055/s-2005-922438

    Article  PubMed  Google Scholar 

  • Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53(2):161–176

    CAS  PubMed  Google Scholar 

  • Pizza FX, Peterson JM, Baas JH, Koh TJ (2005) Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol 562(Pt 3):899–913. doi:10.1113/jphysiol.2004.073965

    CAS  PubMed  Google Scholar 

  • Rawson ES, Gunn B, Clarkson PM (2001) The effects of creatine supplementation on exercise-induced muscle damage. J Strength Cond Res 15(2):178–184

    Article  CAS  PubMed  Google Scholar 

  • Rawson ES, Conti MP, Miles MP (2007) Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise. J Strength Cond Res 21(4):1208–1213

    Article  PubMed  Google Scholar 

  • Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF (2004) The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sci 75(16):1917–1924. doi:10.1016/j.lfs.2003.11.036

    Article  CAS  PubMed  Google Scholar 

  • Sestili P, Martinelli C, Bravi G et al (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40(5):837–849. doi:10.1016/j.freeradbiomed.2005.10.035

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Olsson Y, Nyberg F, Dey PK (1993) Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury: an experimental study in the rat. Neuroscience 57(2):443–449

    Article  CAS  PubMed  Google Scholar 

  • Sherman WM, Costill DL, Fink WJ, Miller JM (1981) Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med 2(2):114–118

    Article  CAS  PubMed  Google Scholar 

  • Silveira L, Hirabara SM, Alberici LC et al (2007) Effect of lipid infusion on metabolism and force of rat skeletal muscles during intense contractions. Cell Physiol Biochem 20(1–4):213–226

    CAS  PubMed  Google Scholar 

  • Strachan AF, Noakes TD, Kotzenberg G, Nel AE, deBeer FC (1984) C-reactive protein concentration during long distance running. Br Med J (Clin Res Ed) 289:1249–1251

    Article  CAS  Google Scholar 

  • Suzuki K, Peake J, Nosaka K et al (2006) Changes in markers of muscle damage, inflammation and HSP70 after an Ironman Triathlon race. Eur J Appl Physiol 98(6):525–534. doi:10.1007/s00421-006-0296-4

    Article  CAS  PubMed  Google Scholar 

  • ter Keurs HE, Iwazumi T, Pollack GH (1978) The sarcomere length-tension relation in skeletal muscle. J Gen Physiol 72(4):565–592

    Article  CAS  PubMed  Google Scholar 

  • Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586(7):2003–2014. doi:10.1113/jphysiol.2007.148338

    Article  CAS  PubMed  Google Scholar 

  • Wood SA, Morgan DL, Proske U (1993) Effects of repeated eccentric contractions on structure and mechanical properties of toad sartorius muscle. Am J Physiol 265(3 pt 1):C792–C800

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for the financial support. RAB was fellowship recipient of a PhD scholarship from FAPESP (04/00573-1). The authors would like to thank JR de Mendonça, Dr. Tatiana C. Alba Loureiro, Erica P. Silva, Geraldina Oliveira de Souza, and Adhemar Pettri Filho for their constant assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo Abunasser Bassit.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassit, R.A., Pinheiro, C.H., Vitzel, K.F. et al. Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur J Appl Physiol 108, 945–955 (2010). https://doi.org/10.1007/s00421-009-1305-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1305-1

Keywords

Navigation