Skip to main content
Log in

Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the role of muscle metaboreflex on exercise-induced growth hormone (GH) secretion. In order to accumulate metabolites within exercised muscle with minimized central motor activity, electromyostimulation (EMS) was performed combined with blood flow restriction (BFR). Seven men performed one-legged isometric knee extension evoked by EMS (frequency, 20 Hz; pulse duration, 400 μs; on–off ratio, 3–1 s). Just before the exercise, proximal portion of either a stimulated thigh (ST) or a non-stimulated thigh (NT) was compressed at 150 mmHg with an air-pressure cuff for the purpose of BFR. The compression was kept throughout the exercise session, and was released 2 min after the end of the exercise. Two exercise sessions (STBFR, BFR for ST; NTBFR, BFR for NT) were separated by 1 week. STBFR was aimed to accumulate metabolites within exercised muscle, whereas NTBFR was aimed to match mechanical stress with STBFR without accumulating metabolites. Blood samples for hormonal measurements were taken from the antecubital vein before and after the exercise. Blood lactate increased immediately after the exercise in the NTBFR, whereas it increased after the cuff deflation in the STBFR, suggesting that locally produced metabolites were retained and accumulated within the exercised muscle in the STBFR. Although serum cortisol and plasma noradrenaline increased in a similar manner in two conditions, serum immunoreactive GH (irGH) increased only in the STBFR. These results suggest that muscle metaboreflex plays an important role in the exercise-induced GH secretion, at least in terms of irGH secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100:1460–1466

    Article  PubMed  CAS  Google Scholar 

  • Albers N (2001) Overview of pulse actions in the human. Growth Horm IGF Res 11(Suppl A): S39–S42

    Google Scholar 

  • Baldari C, Bonavolonta V, Emerenziani GP, Gallotta MC, Silva AJ, Guidetti L (2009) Accuracy, reliability, linearity of Accutrend and Lactate Pro versus EBIO plus analyzer. Eur J Appl Physiol 107:105–111

    Article  PubMed  Google Scholar 

  • Baumann G (1991) Growth hormone heterogeneity: genes, isohormones, variants, and binding proteins. Endocr Rev 12:424–449

    Article  PubMed  CAS  Google Scholar 

  • Bell MP, White MJ (2005) Cardiovascular responses to external compression of human calf muscle vary during graded metaboreflex stimulation. Exp Physiol 90:383–391

    Article  PubMed  Google Scholar 

  • Boerio D, Jubeau M, Zory R, Maffiuletti NA (2005) Central and peripheral fatigue after electrostimulation-induced resistance exercise. Med Sci Sports Exerc 37:973–978

    PubMed  Google Scholar 

  • Chwalbinska-Moneta J, Krysztofiak F, Ziemba A, Nazar K, Kaciuba-Uscilko H (1996) Threshold increases in plasma growth hormone in relation to plasma catecholamine and blood lactate concentrations during progressive exercise in endurance-trained athletes. Eur J Appl Physiol Occup Physiol 73:117–120

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103:903–910

    Article  PubMed  CAS  Google Scholar 

  • Godfrey RJ, Madgwick Z, Whyte GP (2003) The exercise-induced growth hormone response in athletes. Sports Med 33:599–613

    Article  PubMed  Google Scholar 

  • Gordon SE, Kraemer WJ, Vos NH, Lynch JM, Knuttgen HG (1994) Effect of acid-base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol 76:821–829

    PubMed  CAS  Google Scholar 

  • Gosselink KL, Roy RR, Zhong H, Grindeland RE, Bigbee AJ, Edgerton VR (2004) Vibration-induced activation of muscle afferents modulates bioassayable growth hormone release. J Appl Physiol 96:2097–2102

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Ishii N, Kizuka T, Takamatsu K (2005) The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 37:955–963

    Article  PubMed  CAS  Google Scholar 

  • Hakkinen K, Pakarinen A (1993) Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J Appl Physiol 74:882–887

    PubMed  CAS  Google Scholar 

  • Hansen S, Kvorning T, Kjaer M, Sjogaard G (2001) The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports 11:347–354

    Article  PubMed  CAS  Google Scholar 

  • Hirowatari Y, Ito Y, Kasai M, Takahashi H, Hayashi H (1999) Development of the automatic catecholamine analyzer HLCAII. J Tosoh Res 43:3–12

    CAS  Google Scholar 

  • Hoffman JR, Im J, Rundell KW, Kang J, Nioka S, Spiering BA, Kime R, Chance B (2003) Effect of muscle oxygenation during resistance exercise on anabolic hormone response. Med Sci Sports Exerc 35:1929–1934

    Article  PubMed  CAS  Google Scholar 

  • Howlett TA (1987) Hormonal responses to exercise and training: a short review. Clin Endocrinol (Oxf) 26:723–742

    Article  CAS  Google Scholar 

  • Hymer WC, Kraemer WJ, Nindl BC, Marx JO, Benson DE, Welsch JR, Mazzetti SA, Volek JS, Deaver DR (2001) Characteristics of circulating growth hormone in women after acute heavy resistance exercise. Am J Physiol Endocrinol Metab 281:E878–E887

    PubMed  CAS  Google Scholar 

  • Iwahara K, Tanabe C, Maekawa M (2007) Comparison of access ultrasensitive human growth hormone assay to monoclonal antibody-based immunoradiometric assay. Clin Chim Acta 376:248–249

    Article  PubMed  CAS  Google Scholar 

  • Ju G (1999) Evidence for direct neural regulation of the mammalian anterior pituitary. Clin Exp Pharmacol Physiol 26:757–759

    Article  PubMed  CAS  Google Scholar 

  • Ju G, Liu S (1989) Relationship of Substance P-immunoreactive nerve fibers with somatotropes of the anterior pituitary in the monkey. J Neuroendocrinol 1:397–400

    Article  PubMed  CAS  Google Scholar 

  • Kjaer M, Secher NH, Bach FW, Galbo H (1987) Role of motor center activity for hormonal changes and substrate mobilization in humans. Am J Physiol 253:R687–R695

    PubMed  CAS  Google Scholar 

  • Kozlowski S, Chwalbinska-Moneta J, Vigas M, Kaciuba-Uscilko H, Nazar K (1983) Greater serum GH response to arm than to leg exercise performed at equivalent oxygen uptake. Eur J Appl Physiol Occup Physiol 52:131–135

    Article  PubMed  CAS  Google Scholar 

  • Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69:1442–1450

    PubMed  CAS  Google Scholar 

  • Kraemer WJ, Dunn-Lewis C, Comstock BA, Thomas GA, Clark JE, Nindl BC (2010) Growth hormone, exercise, and athletic performance: a continued evolution of complexity. Curr Sports Med Rep 9:242–252

    PubMed  Google Scholar 

  • Lindinger MI, Kowalchuk JM, Heigenhauser GJ (2005) Applying physicochemical principles to skeletal muscle acid-base status. Am J Physiol Regul Integr Comp Physiol 289: R891–r894 (author reply R904–910)

    Google Scholar 

  • Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N (2008) Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc 40:258–263

    Article  PubMed  Google Scholar 

  • Madarame H, Sasaki K, Ishii N (2010) Endocrine responses to upper- and lower-limb resistance exercises with blood flow restriction. Acta Physiol Hung 97:192–200

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa K, Sadamoto T, Tsuchimochi H, Komine H, Murata J, Shimizu K (2001) Reflex responses in plasma catecholamines caused by static contraction of skeletal muscle. Jpn J Physiol 51:591–597

    Article  PubMed  CAS  Google Scholar 

  • McCall GE, Grindeland RE, Roy RR, Edgerton VR (2000) Muscle afferent activity modulates bioassayable growth hormone in human plasma. J Appl Physiol 89:1137–1141

    PubMed  CAS  Google Scholar 

  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64:552–556

    Article  PubMed  CAS  Google Scholar 

  • Nindl BC, Kraemer WJ, Marx JO, Tuckow AP, Hymer WC (2003) Growth hormone molecular heterogeneity and exercise. Exerc Sport Sci Rev 31:161–166

    Article  PubMed  Google Scholar 

  • Nishiyasu T, Tan N, Morimoto K, Sone R, Murakami N (1998) Cardiovascular and humoral responses to sustained muscle metaboreflex activation in humans. J Appl Physiol 84:116–122

    PubMed  CAS  Google Scholar 

  • Papadimitriou A, Priftis KN (2009) Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation 16:265–271

    Article  PubMed  CAS  Google Scholar 

  • Papaiordanidou M, Guiraud D, Varray A (2010) Kinetics of neuromuscular changes during low-frequency electrical stimulation. Muscle Nerve 41:54–62

    Article  PubMed  Google Scholar 

  • Peyreigne C, Bouix D, Fedou C, Mercier J (2001) Effect of hydration on exercise-induced growth hormone response. Eur J Endocrinol 145:445–450

    Article  PubMed  CAS  Google Scholar 

  • Pritzlaff CJ, Wideman L, Weltman JY, Abbott RD, Gutgesell ME, Hartman ML, Veldhuis JD, Weltman A (1999) Impact of acute exercise intensity on pulsatile growth hormone release in men. J Appl Physiol 87:498–504

    PubMed  CAS  Google Scholar 

  • Pyne DB, Boston T, Martin DT, Logan A (2000) Evaluation of the Lactate Pro blood lactate analyser. Eur J Appl Physiol 82:112–116

    Article  PubMed  CAS  Google Scholar 

  • Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, Castracane VD (2006) Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol 101:1616–1622

    Article  PubMed  CAS  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516

    Article  PubMed  CAS  Google Scholar 

  • Stokes KA, Nevill ME, Hall GM, Lakomy HK (2002) The time course of the human growth hormone response to a 6 s and a 30 s cycle ergometer sprint. J Sports Sci 20:487–494

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T (2005) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95:65–73

    Article  PubMed  CAS  Google Scholar 

  • Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000a) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 88:61–65

    PubMed  CAS  Google Scholar 

  • Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000b) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88:2097–2106

    PubMed  CAS  Google Scholar 

  • Tanimoto M, Madarame H, Ishii N (2005) Muscle oxygenation and plasma growth hormone concentration during and after resistance exercise: Comparison between “KAATSU” and other types of regimen. Int J KAATSU Train Res 1:51–56

    Article  Google Scholar 

  • Tanner RK, Fuller KL, Ross ML (2010) Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur J Appl Physiol 109:551–559

    Article  PubMed  CAS  Google Scholar 

  • Vanhelder WP, Radomski MW, Goode RC (1984) Growth hormone responses during intermittent weight lifting exercise in men. Eur J Appl Physiol Occup Physiol 53:31–34

    Article  PubMed  CAS  Google Scholar 

  • Vissing J, Iwamoto GA, Fuchs IE, Galbo H, Mitchell JH (1994) Reflex control of glucoregulatory exercise responses by group III and IV muscle afferents. Am J Physiol 266:R824–R830

    PubMed  CAS  Google Scholar 

  • Wallace JD, Cuneo RC, Bidlingmaier M, Lundberg PA, Carlsson L, Boguszewski CL, Hay J, Healy ML, Napoli R, Dall R, Rosen T, Strasburger CJ (2001) The response of molecular isoforms of growth hormone to acute exercise in trained adult males. J Clin Endocrinol Metab 86:200–206

    Article  PubMed  CAS  Google Scholar 

  • Weltman A, Pritzlaff CJ, Wideman L, Weltman JY, Blumer JL, Abbott RD, Hartman ML, Veldhuis JD (2000) Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow. J Appl Physiol 89:629–635

    PubMed  CAS  Google Scholar 

  • Wideman L, Weltman JY, Hartman ML, Veldhuis JD, Weltman A (2002) Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings. Sports Med 32:987–1004

    Article  PubMed  Google Scholar 

  • Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, Abe T (2009) Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci 27:479–489

    Article  PubMed  Google Scholar 

  • Yoshimura M, Komori T, Nakanishi T, Takahashi H (1993) Estimation of sulphoconjugated catecholamine concentrations in plasma by high-performance liquid chromatography. Ann Clin Biochem 30(Pt 2):135–141

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant-in-Aid for Scientific Research (B-16300207 to N. I.) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Madarame.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagaki, Y., Madarame, H., Neya, M. et al. Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction. Eur J Appl Physiol 111, 2715–2721 (2011). https://doi.org/10.1007/s00421-011-1899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1899-y

Keywords

Navigation