Skip to main content
Log in

A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The integrate-and-fire neuron model is one of the most widely used models for analyzing the behavior of neural systems. It describes the membrane potential of a neuron in terms of the synaptic inputs and the injected current that it receives. An action potential (spike) is generated when the membrane potential reaches a threshold, but the actual changes associated with the membrane voltage and conductances driving the action potential do not form part of the model. The synaptic inputs to the neuron are considered to be stochastic and are described as a temporally homogeneous Poisson process. Methods and results for both current synapses and conductance synapses are examined in the diffusion approximation, where the individual contributions to the postsynaptic potential are small. The focus of this review is upon the mathematical techniques that give the time distribution of output spikes, namely stochastic differential equations and the Fokker–Planck equation. The integrate-and-fire neuron model has become established as a canonical model for the description of spiking neurons because it is capable of being analyzed mathematically while at the same time being sufficiently complex to capture many of the essential features of neural processing. A number of variations of the model are discussed, together with the relationship with the Hodgkin–Huxley neuron model and the comparison with electrophysiological data. A brief overview is given of two issues in neural information processing that the integrate-and-fire neuron model has contributed to – the irregular nature of spiking in cortical neurons and neural gain modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott LF, Kepler TB (1990). Model neurons: from Hodgkin–Huxley to Hopfield. In: Garrido L (eds). Statistical mechanics of neural networks. Springer, Berlin Heidelberg New York, pp 5–18

    Google Scholar 

  • Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural network retrieving at low spike rates: I. Substrate–spikes, rates and neuronal gain. Netw Comput Neural Syst 2:259–273

    Google Scholar 

  • Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15:2523–2564

    PubMed  Google Scholar 

  • Brillinger DR (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cybern 59:189–200

    PubMed  CAS  Google Scholar 

  • Brillinger DR, Segundo JP (1979) Empirical examination of the threshold model of neuron firing. Biol Cybern 35:213–220

    PubMed  CAS  Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183–208

    PubMed  CAS  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11: 1621–1671

    PubMed  CAS  Google Scholar 

  • Brunel N, Latham PE (2003) Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Comput 15:2281–2306

    PubMed  Google Scholar 

  • Brunel N, Sergi S (1998) Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics. J Theor Biol 11:87–95

    Google Scholar 

  • Brunel N, Hakim V, Richardson MJE (2003) Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E 67:051916

    Google Scholar 

  • Bryant HL, Segundo JP (1976) Spike initiation by transmembrane current: a white-noise analysis. J Physiol 260:279–314

    PubMed  CAS  Google Scholar 

  • Bugmann G, Christodoulou C, Taylor JG (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comput 9:985–1000

    Google Scholar 

  • Buonocore DV, Giorno V, Nobile AG, Ricciardi LM (2002) A neuronal modeling paradigm in the presence of refractoriness. BioSystems 67:35–43

    PubMed  CAS  Google Scholar 

  • Burkitt AN (2001) Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials. Biol Cybern 85:247–255

    PubMed  CAS  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model. II. Inhomogeneous synaptic input and network properties. Biol Cybern (in press)

  • Burkitt AN, Clark GM (1999) Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output in neural systems. Neural Comput 11:871–901

    PubMed  CAS  Google Scholar 

  • Burkitt AN, Clark GM (2000) Calculation of interspike intervals for integrate-and-fire neurons with Poisson distribution of synaptic inputs. Neural Comput 12:1789–1820

    PubMed  CAS  Google Scholar 

  • Burkitt AN, van Hemmen JL (2003) How synapses in the auditory system wax and wane: theoretical perspectives. Biol Cybern 89:318–332

    Google Scholar 

  • Burkitt AN, Meffin H, Grayden DB (2003) Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input. Biol Cybern 89: 119–125

    PubMed  CAS  Google Scholar 

  • Calvin W, Stevens CF (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol 31: 574–587

    PubMed  CAS  Google Scholar 

  • Capaday C (2002) A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances. Exp Brain Res 143:67–77

    PubMed  CAS  Google Scholar 

  • Capocelli RM, Ricciardi LM (1971) Diffusion approximation and first passage time problem for a model neuron. Kybernetik 8:214–233

    PubMed  CAS  Google Scholar 

  • Chacron M, Pakdaman K, Longtin A (2003) Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Comput 15:253–278

    PubMed  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from balanced synaptic input. Neuron 35:773–782

    PubMed  CAS  Google Scholar 

  • Chhikara RS, Folks JL (1989) The Inverse Gaussian distribution: theory, methodology and applications. Marcel Dekker, New York

    Google Scholar 

  • Cope DK, Tuckwell HC (1979) Firing rates of neurons with random excitation and inhibition. J Theor Biol 80:1–14

    PubMed  CAS  Google Scholar 

  • Cox DR (1962) Renewal theory. science paperbacks, Chapman and Hall, New York

    Google Scholar 

  • Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Methuen, London

    Google Scholar 

  • Cox DR, Miller HD (1965) The theory of stochastic processes. Chapman and Hall, London

    Google Scholar 

  • Cox DR, Smith WL (1954) On the Superposition of renewal processes. Biometrika 41:91–99

    Google Scholar 

  • Destexhe A (1997) Conductance-based integrate-and-fire models. Neural Comput 9:503–514

    PubMed  CAS  Google Scholar 

  • Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical neurons in vivo. J Neurophysiol 81: 1531–1547

    PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M, Fellous J-M, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in-vivo-like activity in neocortical neurons. Neuroscirnce 107:13–24

    CAS  Google Scholar 

  • Doiron B, Longtin A, Berman N, Maler L (2000) Subtractive and divisive inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural Comput 13:227–248

    Google Scholar 

  • Ermentrout GB (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979–1001

    PubMed  CAS  Google Scholar 

  • Ermentrout GB (1998) Linearization of F-I curves by adaptation. Neural Comput 10:1721–1729

    PubMed  CAS  Google Scholar 

  • Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46:233–253

    Google Scholar 

  • Feng J, Brown D (2000) Impact of correlated inputs on the output of the integrate-and-fire model. Neural Comput 12:671–692

    PubMed  CAS  Google Scholar 

  • Fourcaud N, Brunel N (2002) Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput 14:2057–2110

    PubMed  Google Scholar 

  • Fourcaud-Trocmé N, Brunel N (2005) Dynamics of the instantaneous firing rate in response to changes in input statistics. J Comput Neurosci 18:311–321

    PubMed  Google Scholar 

  • Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23:11628–11640

    PubMed  Google Scholar 

  • Fuhrmann G, Markram H, Tsodyks M (2002) Spike frequency adaptation and neocortical rhythms. J Neurophysiol 88:761–770

    PubMed  Google Scholar 

  • Fusi S, Mattia M (1999) Collective behavior of networks of linear (VLSI) integrate-and-fire neurons. Neural Comput 11:633–652

    PubMed  CAS  Google Scholar 

  • Geisler CD, Goldberg JM (1966) A stochastic model of the repetitive activity of neurons. Biophys J 6:53–69

    PubMed  Google Scholar 

  • Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68

    PubMed  CAS  Google Scholar 

  • Gerstner W (1995) Time structure of the activity in neural network models. Phys Rev E 51:738–758

    CAS  Google Scholar 

  • Gerstner W (2001). A framework for spiking neuron models: the spike response model. In: Moss F, Gielen S (eds). The handbook of biological physics. Elsevier, Amsterdam, chap 12 pp. 469–516

    Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge

    Google Scholar 

  • Giugliano M, Darbon P, Arsiero M, Lüscher H-R, Streit J (2004) Single-neuron discharge properties and network activity in dissociated cultures of neocortex. J Neurophysiol 92:977–996

    PubMed  CAS  Google Scholar 

  • Gluss B (1967) A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull Math Biophysics 29:233–243

    CAS  Google Scholar 

  • Gomez L, Budelli R, Saa R, Stiber M, Segundo JP (2005) Pooled spike trains of correlated presynaptic inputs as realizations of cluster point processes. Biol Cybern 92:110–127

    PubMed  Google Scholar 

  • Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput 10:1047–1065

    PubMed  CAS  Google Scholar 

  • Habib MK, Thavaneswaran A (1990) Inference for stochastic neuronal models. Appl Math Comput 38:51–73

    Google Scholar 

  • Hansel D, van Vreeswijk C (2002) How noise contributes to contrast invariance of orientation tuning in cat visual cortex. J Neurosci 22:5118–5128

    PubMed  CAS  Google Scholar 

  • Hanson FB, Tuckwell HC (1983) Diffusion approximations for neuronal activity including synaptic reversal potentials. J Theor Neurobiol 2:127–153

    Google Scholar 

  • Hill AV (1936) Excitation and accommodation in nerve. Proc R Soc B 119:305–355

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500–544

    CAS  Google Scholar 

  • Hohn N, Burkitt AN (2001) Shot noise in the leaky integrate-and-fire neuron. Phys Rev E 63:031902

    CAS  Google Scholar 

  • Holden AV (1976) Models of the stochastic theory of neurons. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Inoue J, Sate S, Ricciardi LM (1995) On the parameter extimation for diffusion models of single neuron’s activities. Biol Cybern 73:209–221

    PubMed  CAS  Google Scholar 

  • Izhikevich EM (1999) Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models. IEEE Trans Neural Netw 10:499–507

    PubMed  CAS  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070

    PubMed  Google Scholar 

  • Jack JB, Noble D, Tsien RW (1985) Electric current flow in excitable cells. Clarendon, Oxford

    Google Scholar 

  • Jackson BS (2004) Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Neural Comput 16:2125–2195

    PubMed  Google Scholar 

  • Johannesma PIM (1968). Diffusion models for the stochastic activity of neurons. In: Caianiello ER (eds). Neural Networks. Springer, Berlin Heidelberg New York, pp 116–144

    Google Scholar 

  • Johnson DH (1996) Point process model of single-neuron discharges. J Comput Neurosci 3:275–299

    PubMed  CAS  Google Scholar 

  • Kallianpur G, Wolpert RL (1987). Weak convergence of stochastic neuronal models. In: Kimura M, Kallianpur G, Hida T (eds). Stochastic methods in biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL, Wagner H (1998) Extracting oscillations: neuronal coincidence detection with noisy periodic spike input. Neural Comput 10:1987–2017

    PubMed  CAS  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of the Hodgkin–Huxley equations to a single-variable threshold model. Neural Comput 9:1015–1045

    Google Scholar 

  • Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734–766

    PubMed  CAS  Google Scholar 

  • Kohn AF (1989) Dendritic transformations on random synaptic inputs as measured from a neuron’s spike trains – modeling and simulations. IEEE Trans Biomed Eng 36:44–54

    PubMed  CAS  Google Scholar 

  • Kryukov VI (1976) Wald’s identity and random walk models for neuron firing. Adv Appl Probab 8:257–277

    Google Scholar 

  • Kuhn A, Aertsen A, Rotter S (2003) Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comput 15:67–101

    PubMed  Google Scholar 

  • Kuhn A, Aertsen A, Rotter S (2004) Neuronal integration of synaptic input in the fluctuation-driven regime. J Neurosci 24:2345–2356

    PubMed  CAS  Google Scholar 

  • La Camera G, Rauch A, Lüscher HR, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to In vivo-like input currents. Neural Comput 16:2101–2124

    PubMed  Google Scholar 

  • Laing CR, Longtin A (2003) Dynamics of deterministic and stochastic paired excitatory-inhibitory delayed feedback. Neural Comput 15:2779–2822

    PubMed  Google Scholar 

  • Lamperti J (1966) Probability. Benjamin, New York

    Google Scholar 

  • Lamperti J (1996) Probability 2nd edn. Wiley, New York

    Google Scholar 

  • Lánská V, Lánský P (1998) Input parameters in a one-dimensional neuronal model with reversal potentials. BioSystems 48:123–129

    PubMed  Google Scholar 

  • Lánská V, Lánský P, Smith CE (1994) Synaptic transmission in a diffusion model for neural activity. J Theor Biol 166:393–406

    PubMed  Google Scholar 

  • Lánský P (1983) Inference for diffusion models of neuronal activity. Math Biosci 67:247–260

    Google Scholar 

  • Lánský P (1984) On approximations of stein’s neuronal model. J Theor Biol 107:631–647

    PubMed  Google Scholar 

  • Lánský P (1997) Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics. Phys Rev E 55:2040–2043

    Google Scholar 

  • Lánský P, Lánská V (1987) Diffusion approximation of the neuronal model with synaptic reversal potentials. Biol Cybern 56:19–26

    PubMed  Google Scholar 

  • Lánský P, Musila M (1991) Variable initial depolarization in stein’s neuronal model with synaptic reversal potentials. Biol Cybern 64: 285–291

    PubMed  Google Scholar 

  • Lánský P, Radil T (1987) Stastical inference on spontaneous neuronal discharge patterns. Biol Cybern 55:299–311

    Article  PubMed  Google Scholar 

  • Lánský P, Rodriguez R (1999a) The spatial properties of a model neuron increase its coding range. Biol Cybern 81:161–167

    Google Scholar 

  • Lánský P, Rodriguez R (1999b) Two-compartment stochastic model of a neuron. Physica D 132:267–286

    Google Scholar 

  • Lánský P, Rospars JP (1995) Ornstein–Uhlenbeck model neuron revisited. Biol Cybern 72:397–406

    Google Scholar 

  • Lánský P, Sato S (1999) The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. J Periph Nerv Syst 4:27–42

    Google Scholar 

  • Lánský P, Smith CE (1989) The Effect of a random initial value in neural first-passage-time models. Math Biosci 93:191–215

    PubMed  Google Scholar 

  • Lánský P, Smith CE (1991) A one-dimensional neuronal diffusion model with reversal potentials. J Math Phys Sci 25:1–10

    Google Scholar 

  • Lánský P, Sacerdote L, Tomassetti F (1995) On the comparison of Feller and Ornstein–Uhlenbeck models for neural activity. Biol Cybern 73:457–465

    Article  PubMed  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitée comme une polarization. J Physiol Pathol Gen (Paris) 9:620–635

    Google Scholar 

  • Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83: 808–827

    PubMed  CAS  Google Scholar 

  • Lindner B (2004) Interspike interval statistics of neurons driven by colored noise. Phys Rev E 69:022901

    Google Scholar 

  • Lindner B, Longtin A (2005a) Comment on: characterization of subthreshold voltage fluctuations in neuronal membranes by M Rudolph and A Destexhe. Neural Comput (in press)

  • Lindner B, Longtin A (2005b) Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron. J Theor Biol 232:505–521

    Google Scholar 

  • Lindner B, Longtin A, Bulsara A (2003) Analytic expressions for rate and CV of a type I neuron driven by white Gaussian noise. Neural Comput 15:1761–1788

    Google Scholar 

  • Liu Y-H, Wang X-J (2001) Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J Comput Neurosci 10:25–45

    PubMed  CAS  Google Scholar 

  • Longtin A, Doiron B, Bulsara AR (2002) Noise-induced divisive gain control in neuron models. BioSys 67:147–156

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506

    PubMed  CAS  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Cooperative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–805

    PubMed  CAS  Google Scholar 

  • Meffin H, Burkitt AN, Grayden DB (2004) An analytical model for the ‘large, fluctuating conductance state’ typical of neocortical neurons in vivo. J Comput Neurosci 16:159–175

    PubMed  Google Scholar 

  • Meffin H, Burkitt AN, Grayden DB (2005) Dynamically adjustable contrast enhancement from cortical background activity. Neurocomput 65-66:633–639

    Google Scholar 

  • Middleton JW, Chacron MJ, Lindner B, Longtin A (2003) Firing statistics of a neuron model driven by long-range correlated noise. Phys Rev E 68:021920

    CAS  Google Scholar 

  • Moreno R, de la Rocha J, Renart A, Parga N (2002) Response of spiking neurons to correlated inputs. Phys Rev Lett 89:288101

    PubMed  Google Scholar 

  • Moreno-Bote R, Parga N (2004) Role of synaptic filtering on the firing response of simple model neurons. Phys Rev Lett 92:028102

    PubMed  Google Scholar 

  • Murphy BK, Miller KD (2003) Multiplicative gain changes are induced by excitation or inhibition alone. J Neurosci 23:10040–10051

    PubMed  CAS  Google Scholar 

  • Musila M, Lánský P (1994) On the interspike intervals calculated from diffusion approximations of Stein’s neuronal model with reversal potentials. J Theor Biol 171:225–232

    PubMed  CAS  Google Scholar 

  • Nilsson HG (1977) Estimation of parameters in a diffusion neuron model. Comput Biomed Res 10:191–197

    PubMed  CAS  Google Scholar 

  • Noble D, Stein RB (1966) The threshold conditions for initiation of action potentials by excitable cells. J Physiol 187:129–162

    PubMed  Google Scholar 

  • O’Neill WD, Lin JC, Ma Y-C (1986) Estimation and verification of a stochastic neuron model. IEEE Trans Biomed Eng 33:654–666

    Google Scholar 

  • Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood extimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16:2533–2561

    PubMed  Google Scholar 

  • Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill, Singapore

    Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. I. The Single Spike Train. Biophys J 7:391–418

    PubMed  CAS  Google Scholar 

  • Plesser HE, Gerstner W (2000) Noise in integrate-and-fire neurons: from stochastic input to escape rates. Neural Comput 12:367–384

    PubMed  CAS  Google Scholar 

  • Plesser HE, Tanaka S (1997) Stochastic resonance in a model neuron with reset. Phys Lett A 225:228–234

    CAS  Google Scholar 

  • Rauch A, La Camera G, Lüscher HR, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J Neurophysiol 90:1598–1612

    PubMed  Google Scholar 

  • Ricciardi LM (1976) Diffusion approximation for a multi-input model neuron. Biol Cybern 24:237–240

    PubMed  CAS  Google Scholar 

  • Ricciardi LM (1977) Diffusion processes and related topics in biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ricciardi LM, Sacerdote L (1979) The Ornstein–Uhlenbeck process as a model for neuronal activity. Biol Cybern 35:1–9

    PubMed  CAS  Google Scholar 

  • Richardson MJE (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys Rev E 69:051918

    Google Scholar 

  • Richardson MJE, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17:923–947

    PubMed  Google Scholar 

  • Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    PubMed  Google Scholar 

  • Risken H (1996) The Fokker–Planck equation, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roy BK, Smith DR (1969) Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull Math Biophys 31:341–357

    PubMed  CAS  Google Scholar 

  • Rudd ME, Brown LG (1997) Noise Adaptation in integrate-and-fire neurons. Neural Comput 9:1047–1069

    PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2003) The discharge variability of neocortical neurons during high-conductance states. Neurosci 119:855–873

    CAS  Google Scholar 

  • Sakai Y, Funahashi S, Shinomoto S (1999) Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Netw 12:1181–1190

    PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193–6209

    PubMed  CAS  Google Scholar 

  • Salinas E, Sejnowski TJ (2002) Integrate-and-fire neurons driven by correlated stochastic input. Neural Comput 14:2111–2155

    PubMed  Google Scholar 

  • Salinas E, Thier P (2000) Gain modulation: a major computational principle of the central nervous system. Neuron 27:15–21

    PubMed  CAS  Google Scholar 

  • Schrödinger E (1915) Zur Theorie der Fall- und Steigversuche an Teilchen mit Brownscher Bewegung. Phys Zeitschr 16:289–295

    Google Scholar 

  • Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569–579

    PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896

    PubMed  CAS  Google Scholar 

  • Siebert WM (1969) On stochastic neural models of the diffusion type. Prog Rep 94:281–287, Res Lab Electronics, MIT, Cambridge

    Google Scholar 

  • Siegert AJF (1951) On the first passage time probability problem. Phys Rev 81:617–623

    Google Scholar 

  • Smith CE, Smith MV (1984) Moments of voltage trajectories for Stein’s model with synaptic reversal potentials. J Theor Neurobiol 3:67–77

    Google Scholar 

  • Softky WR, Koch C (1992) Cortical cells should fire regularly, but do not. Neural Comput 4:643–646

    Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350

    PubMed  CAS  Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–194

    PubMed  CAS  Google Scholar 

  • Stein RB (1967) Some models of neuronal variability. Biophys J 7: 37–68

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nature Neurosci 1:210–217

    PubMed  CAS  Google Scholar 

  • Stirzaker D (2005) Stochastic processes and models. Oxford University Press, New York

    Google Scholar 

  • Stroeve S, Gielen S (2001) Correlation between uncoupled conductance-based integrate-and-fire neurons due to common and synchronous presynaptic firing. Neural Comput 13:2005–2029

    PubMed  CAS  Google Scholar 

  • Sugiyama H, Moore GP, Perkel DH (1970) Solutions for a stochastic model of neuronal spike production. Math Biosci 8:323–341

    Google Scholar 

  • Svirskis G, Rinzel J (2000) Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. Biophys J 79:629–637

    PubMed  CAS  Google Scholar 

  • Tabak J, Murphey CR, Moore LE (2000) Parameter estimation methods for single neuron models. J Comput Neurosci 9:215–236

    PubMed  CAS  Google Scholar 

  • Tiesinga PHE, José JV, Sejnowski TJ (2000) Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin–Huxley voltage-gated channels. Phys Rev E 62:8413–8419

    CAS  Google Scholar 

  • Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput 9:971–983

    PubMed  CAS  Google Scholar 

  • Tuckwell HC (1977) On stochastic models of the activity of single neurons. J Theor Biol 65:783–785

    PubMed  CAS  Google Scholar 

  • Tuckwell HC (1978a) Neuronal interspike time histograms for a random input model. Biophys J 21:289–290

    CAS  Google Scholar 

  • Tuckwell HC (1978b) Recurrent inhibition and afterhyperpolarization: effects on neuronal discharge. Biol Cybern 30:115–123

    CAS  Google Scholar 

  • Tuckwell HC (1979) Synaptic transmission in a model for stochastic neural activity. J Theor Biol 77:65–81

    PubMed  CAS  Google Scholar 

  • Tuckwell HC (1988a) Introduction to Theoretical Neurobiology. In: linear cable theory and dendritic structure, vol 1. Cambridge University Press, Cambridge

  • Tuckwell HC (1988b) Introduction to Theoretical Neurobiology. In: Nonlinear and stochastic theories, vol 2. Cambridge University Press, Cambridge

  • Tuckwell HC, Cope DK (1980) Accuracy of neuronal interspike times calculated from a diffusion approximation. J Theor Biol 83:377–387

    PubMed  CAS  Google Scholar 

  • Tuckwell HC, Richter W (1978) Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical paramaters. J Theor Biol 71:167–183

    PubMed  CAS  Google Scholar 

  • Tuckwell HC, Wan FYM (1984) First passage time of Markov processes to moving barriers. J Appl Probab 21:695

    Google Scholar 

  • Uhlenbeck GE, Ornstein LS (1930) On the theory of Brownian motion. Phys Rev 36:823–841

    CAS  Google Scholar 

  • Usher M, Stemmler M, Koch C, Olami Z (1994) Network amplification of local fluctuations causes high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Comput 6:795–836

    Google Scholar 

  • van Kampen NG (1992) Stochastic processes in physics and chemistry. North-Holland, Amsterdam

  • Wang X-J (1998) Calcium Coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol 79:1549–1566

    PubMed  CAS  Google Scholar 

  • Wehmeier U, Dong D, Koch C, Van Essen D (1989). Modeling the mammalian visual system. In: Koch C, Segev I (eds). Methods in neuronal modeling: from synapses to networks, Chap 10. MIT, Cambridge, pp 335–360

    Google Scholar 

  • Wilbur WJ, Rinzel J (1982) An Analysis of Stein’s model for stochastic neuronal excitation. Biol Cybern 45:107–114

    PubMed  CAS  Google Scholar 

  • Wilbur WJ, Rinzel J (1983) A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distributions. J Theor Biol 105:345–368

    PubMed  CAS  Google Scholar 

  • Yu Y, Lee TS (2003) Dynamical mechanisms underlying contrast gain control in single neurons. Phys Rev E 68:011901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Burkitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkitt, A.N. A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input. Biol Cybern 95, 1–19 (2006). https://doi.org/10.1007/s00422-006-0068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0068-6

Keywords

Navigation