Skip to main content

Advertisement

Log in

Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers

  • The ABC of Solute Carriers
  • Guest Editor: Matthias A. Hediger
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

All of the members of this family are thought to facilitate zinc efflux from the cytoplasm either into various intracellular compartments (endosomes, secretory granules, synaptic vesicles, Golgi apparatus, or trans-Golgi network) or across the plasma membrane. Thus, these transporters are thought to help maintain zinc homeostasis and facilitate transport of zinc into specialized intracellular compartments. Counterparts of the SLC30 family are found in all organisms. Most of the members of this class are predicted to have 6 transmembrane domains with both N- and C-termini on the cytoplasmic side of the membrane. Expression of rodent Znt1, Znt2 or Znt4 cDNAs in mammalian cells can confer resistance to zinc toxicity. Loss of function of the mouse Znt1 is embryonic lethal, loss of mouse Znt3 prevents accumulation of zinc in synaptic vesicles, nonfunctional mouse Znt4 (lethal milk) results in zinc-deficient milk, and Znt5-null mice display bone abnormalities and heart failure. No mutations in human counterparts of any of the members of the SLC30 family have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649

    CAS  PubMed  Google Scholar 

  2. Palmiter RD, Cole TB, Findley SD (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15:1784–1791

    Google Scholar 

  3. Kamizono A, Nishizawa M, Teranishi Y, Murata K, Kimura A (1989) Identification of a gene conferring resistance to zinc and cadmium ion in the yeast Saccharomyces cerevisiae. Mol Gen Genet 219:161–167

    CAS  PubMed  Google Scholar 

  4. Conklin DS, Culbertson MR, Kung C (1994) Interactions between gene products involved in divalent cation transport in Saccharomyces cerevisiae. Mol Gen Genet 244:303–311

    CAS  PubMed  Google Scholar 

  5. Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939

    CAS  PubMed  Google Scholar 

  6. Huang, L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292–297

    PubMed  Google Scholar 

  7. Piletz JE, Ganschow RE (1978) Zinc deficiency in murine milk underlies expression of the lethal milk (lm) mutation. Science 199:181–183

    CAS  PubMed  Google Scholar 

  8. Erway LC, Grider A Jr (1994) Zinc metabolism in lethal-milk mice: otolith, lactation, and aging effects. J Hered 75:480–484

    Google Scholar 

  9. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Iwanaga T, Nagao M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277:19049–19055

    Article  CAS  PubMed  Google Scholar 

  10. Huang L, Kirschke CP, Gitschier J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 277:26389–26395

    Article  CAS  PubMed  Google Scholar 

  11. Kirschke CP, Huang L (2002) ZnT7, A novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278:4096–4102

    Article  Google Scholar 

  12. Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  CAS  PubMed  Google Scholar 

  13. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    CAS  PubMed  Google Scholar 

  14. Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    CAS  PubMed  Google Scholar 

  15. Guffanti AA, Wei Y, Rood SV, Krulwich TA (2002) An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 45:145–153

    Article  CAS  PubMed  Google Scholar 

  16. MacDiarmid CW, Milanick MA, Eide DJ (2002) Biochemical properties of vacuolar zinc transport systems of Saccaromyces cerevisiae. J Biol Chem 277:39187–39194

    Article  CAS  PubMed  Google Scholar 

  17. Gunshin J, MacKenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  18. McMahon RJ, Cousins RJ (1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 95:4841–4846

    Article  CAS  PubMed  Google Scholar 

  19. Liuzzi JP, Blanchard RK, Cousins RJ (2001) Differential regulation of zinc transporter 1, 2 and 4 mRNA expression by dietary zinc in rats. J Nutr 131:46–52

    CAS  PubMed  Google Scholar 

  20. Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman WF (2002) Distribution of the zinc transporter ZnT-1 in comparison with chelatable zinc in the mouse brain. J Comp Neurol 447:201–209

    Article  CAS  PubMed  Google Scholar 

  21. Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275:34803–34809

    Article  CAS  PubMed  Google Scholar 

  22. Tsuda M, Imaizzumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T (1997) Expression of the zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 17:6678–6684

    CAS  PubMed  Google Scholar 

  23. Kobayashi T, Beuchat M-H, Lindsay SF, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 2:113–118

    Google Scholar 

  24. Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, Palmiter RD (1997) Ultrastructural localization of zinc transporter 3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci USA 94:12676–12681

    Article  CAS  PubMed  Google Scholar 

  25. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721

    Article  CAS  PubMed  Google Scholar 

  26. Kantheti P, Qiao X, Diaz ME, Peden AA, Meyer GE, Carskadon SL, Kapfhamer D, Sufalko D, Robinson MS, Noebels JL, Burmeister M (1998) Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes and synaptic vesicles. Neuron 21:111–122

    CAS  PubMed  Google Scholar 

  27. Cole TB, Martyanova A, Palmiter RD (2001) Removing zinc from synaptic vesicles does not impair learning, memory, or sensorimotor functions in the mouse. Brain Res 891:253–265

    Article  CAS  PubMed  Google Scholar 

  28. Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD (2000) Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res 39:153–169

    Article  CAS  PubMed  Google Scholar 

  29. Lee J-Y, Cole TB, Palmiter RD, Koh J-Y (2000) Accumulation of zinc in degenerating hippocampal neurons on ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neurosci 20:RC79 (1–5)

    CAS  PubMed  Google Scholar 

  30. Lopantsev V, Wenzel HJ, Cole TB, Palmiter RD, Schwartzkroin PA (2003) Lack of vesicular zinc in mossy fibers does not affect synaptic excitability of CA3 pyramidal cells in zinc transporter 3 knockout mice. Neuroscience 116:237–248

    Google Scholar 

  31. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  32. Lee J-Y, Cole TB, Palmiter RD, Suh SW, Koh J-Y (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 99:7705–7710

    Article  CAS  PubMed  Google Scholar 

  33. Murgia C, Vespignani I, Cerase J, Nobili F, Perozzi G (1999) Cloning, expression and vesicular localization of zinc transporter Dri27/ZnT4 in intestinal tissue and cells. Am J Physiol 277:G1231–1239

    CAS  PubMed  Google Scholar 

  34. Michalczyk AA, Allen J, Blomeley RC, Ackland ML (2002) Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells. Biochem J 364:105–113

    CAS  PubMed  Google Scholar 

  35. Kelleher SL, Lonnerdal B (2002) Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation. J Nutr 132:3280–85

    Google Scholar 

  36. Bleck O, Ashton GH, Mallipeddi R, South AP, Wittock NV, McLean WH, Atherton DJ, McGrath JA (2001) Genomic localization, organization and amplification of the human zinc transporter protein gene, ZNT4, and exclusion as a candidate in different variants of acrodermatidis enteropathica. Arch Dermatol Res 293:392–396

    Article  CAS  PubMed  Google Scholar 

  37. Inoue K, Matsuda K, Itoh M, Kawaguchi H, Tomoike H, Aoyagi T, Nagai R, Hori M, Nakamura Y, Tanaka T (2002) Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 11:1775–84

    Article  CAS  PubMed  Google Scholar 

  38. Cragg RA, Christie GR, Phillips SR, Russi RM, Kury S, Mathers JC, Taylor PM, Ford D (2002) A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem 277:22789–97

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Kaplan J (2000) The yeast gene MSC2, a member of the cation diffusion facilitator family, affects cellular distribution of zinc. J Biol Chem 275:5036–5043

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Palmiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmiter, R.D., Huang, L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch - Eur J Physiol 447, 744–751 (2004). https://doi.org/10.1007/s00424-003-1070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1070-7

Keywords

Navigation