Skip to main content
Log in

The V-ATPase in Paramecium: functional specialization by multiple gene isoforms

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The vacuolar H+-ATPase (V-ATPase), a multisubunit, adenosine triphosphate (ATP)-driven proton pump, is essential for numerous cellular processes in all eukaryotes investigated so far. While structure and catalytic mechanism are similar to the evolutionarily related F-type ATPases, the V-ATPase’s main function is to establish an electrochemical proton potential across membranes using ATP hydrolysis. The holoenzyme is formed by two subcomplexes, the transmembraneous V0 and the cytoplasmic V1 complexes. Sequencing of the whole genome of the ciliate Paramecium tetraurelia enabled the identification of virtually all the genes encoding V-ATPase subunits in this organism and the studying of the localization of the enzyme and roles in membrane trafficking and osmoregulation. Surprisingly, the number of V-ATPase genes in this free-living protozoan is strikingly higher than in any other species previously studied. Especially abundant are V0-a-subunits with as many as 17 encoding genes. This abundance creates the possibility of forming a large number of different V-ATPase holoenzymes by combination and has functional consequences by differential targeting to various organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun-Wada GH, Wada Y, Futai M (2004) Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. Biochim Biophys Acta 1658:106–114

    Article  PubMed  CAS  Google Scholar 

  2. Schumacher K (2006) Endomembrane proton pumps: connecting membrane and vesicle transport. Curr Opin Plant Biol 9:595–600

    Article  PubMed  CAS  Google Scholar 

  3. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    Article  PubMed  CAS  Google Scholar 

  4. Inoue T, Wang Y, Jefferies K, Qi J, Hinton A, Forgac M (2005) Structure and regulation of the V-ATPases. J Bioenerg Biomembr 37:393–398

    Article  PubMed  CAS  Google Scholar 

  5. Wilkens S, Inoue T, Forgac M (2004) Three-dimensional structure of the vacuolar ATPase. Localization of subunit H by difference imaging and chemical cross-linking. J Biol Chem 279:41942–41949

    Article  PubMed  CAS  Google Scholar 

  6. Venzke D, Domgall I, Kocher T, Fethiere J, Fischer S, Bottcher B (2005) Elucidation of the stator organization in the V-ATPase of Neurospora crassa. J Mol Biol 349:659–669

    Article  PubMed  CAS  Google Scholar 

  7. Arata Y, Nishi T, Kawasaki-Nishi S, Shao E, Wilkens S, Forgac M (2002) Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H(+))-ATPases. Biochim Biophys Acta 1555:71–74

    Article  PubMed  CAS  Google Scholar 

  8. Kane PM, Smardon AM (2003) Assembly and regulation of the yeast vacuolar H+ATPase. J Bioenerg Biomembr 35:313–321

    Article  PubMed  CAS  Google Scholar 

  9. Yokoyama K, Nakano M, Imamura H, Yoshida M, Tamakoshi M (2003) Rotation of the proteolipid ring in the V-ATPase. J Biol Chem 278:24255–24258

    Article  PubMed  CAS  Google Scholar 

  10. Imamura H, Nakano M, Noji H, Muneyuki E, Ohkuma S, Yoshida M, Yokoyama K (2003) Evidence for rotation of V1-ATPase. Proc Natl Acad Sci USA 100:2312–2315

    Article  PubMed  CAS  Google Scholar 

  11. Nishi T, Forgac M (2002) The vacuolar (H)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  PubMed  CAS  Google Scholar 

  12. Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 278:23714–23719

    Article  PubMed  CAS  Google Scholar 

  13. Feng Y, Forgac M (1992) A novel mechanism for regulation of vacuolar acidification. J Biol Chem 267:19769–19772

    PubMed  CAS  Google Scholar 

  14. Feng Y, Forgac M (1994) Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 269:13224–13230

    PubMed  CAS  Google Scholar 

  15. Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+ATPase in vivo. J Biol Chem 270:17025–17032

    PubMed  CAS  Google Scholar 

  16. Qi J, Forgac M (2007) Cellular environment is important in controlling V-ATPase dissociation and its dependence on activity. J Biol Chem 282:24743–24751

    Article  PubMed  CAS  Google Scholar 

  17. Brown D, Breton S (2000) Sorting proteins to their target membranes. Kidney Int 57:816–824

    Article  PubMed  CAS  Google Scholar 

  18. Mellman I (1992) The importance of being acid: the role of acidification in intracellular membrane transport. J Exp Biol 172:39–45

    PubMed  CAS  Google Scholar 

  19. Ijzendoorn SC (2006) Recycling endosomes. J Cell Sci 119:1679–1681

    Article  PubMed  CAS  Google Scholar 

  20. Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    PubMed  CAS  Google Scholar 

  21. Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420

    Article  PubMed  CAS  Google Scholar 

  22. Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312

    Article  PubMed  CAS  Google Scholar 

  23. Sun-Wada GH, Yoshimizu T, Imai-Senga Y, Wada Y, Futai M (2003) Diversity of mouse proton-translocating ATPase: presence of multiple isoforms of the C, d and G subunits. Gene 302:147–153

    Article  PubMed  CAS  Google Scholar 

  24. Toyomura T, Oka T, Yamaguchi C, Wada Y, Futai M (2000) Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J Biol Chem 275:8760–8765

    Article  PubMed  CAS  Google Scholar 

  25. Yao G, Feng H, Cai Y, Qi W, Kong K (2007) Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts. Biochem Biophys Res Commun 357:821–827

    Article  PubMed  CAS  Google Scholar 

  26. Breton S, Brown D (2007) New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 292:F1–10

    Article  PubMed  CAS  Google Scholar 

  27. Ochotny N, Van Vliet A, Chan N, Yao Y, Morel M, Kartner N, von Schroeder HP, Heersche JN, Manolson MF (2006) Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J Biol Chem 281:26102–26111

    Article  PubMed  CAS  Google Scholar 

  28. Pietrement C, Sun-Wada GH, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S (2006) Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 74:185–194

    Article  PubMed  CAS  Google Scholar 

  29. Sennoune SR, Luo D, Martinez-Zaguilan R (2004) Plasmalemmal vacuolar-type H+ATPase in cancer biology. Cell Biochem Biophys 40:185–206

    Article  PubMed  CAS  Google Scholar 

  30. Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–136

    Article  PubMed  CAS  Google Scholar 

  31. Fok AK, Yamauchi K, Ishihara A, Aihara MS, Ishida M, Allen RD (2002) The vacuolar-atpase of Paramecium multimicronucleatum: gene structure of the B subunit and the dynamics of the V-ATPase-rich osmoregulatory membranes. J Eukaryot Microbiol 49:185–196

    Article  PubMed  CAS  Google Scholar 

  32. Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Le Mouël A, Lepère G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Bétermier M, Weissenbach J, Scarpelli C, Schächter V, Sperling L, Meyer E, Cohen J, Wincker P (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  PubMed  CAS  Google Scholar 

  33. Wassmer T, Froissard M, Plattner H, Kissmehl R, Cohen J (2005) The vacuolar proton-ATPase plays a major role in several membrane-bounded organelles in Paramecium. J Cell Sci 118:2813–2825

    Article  PubMed  CAS  Google Scholar 

  34. Wassmer T, Kissmehl R, Cohen J, Plattner H (2006) Seventeen a-subunit isoforms of Paramecium V-ATPase provide high specialization in localization and function. Mol Biol Cell 17:917–930

    Article  PubMed  CAS  Google Scholar 

  35. Fok AK, Aihara MS, Ishida M, Nolta KV, Steck TL, Allen RD (1995) The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps. J Cell Sci 108:3163–3170

    PubMed  CAS  Google Scholar 

  36. Allen RD, Naitoh Y (2002) Osmoregulation and contractile vacuoles of protozoa. Int Rev Cytol 215:351–394

    Article  PubMed  CAS  Google Scholar 

  37. Stock C, Gronlien HK, Allen RD, Naitoh Y (2002) Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole. J Cell Sci 115:2339–2348

    PubMed  CAS  Google Scholar 

  38. Stock C, Gronlien HK, Allen RD (2002) The ionic composition of the contractile vacuole fluid of Paramecium mirrors ion transport across the plasma membrane. Eur J Cell Biol 81:505–515

    Article  PubMed  CAS  Google Scholar 

  39. Allen RD (2000) The contractile vacuole and its membrane dynamics. Bioessays 22:1035–1042

    Article  PubMed  CAS  Google Scholar 

  40. Allen RD, Fok AK (1983) Nonlysosomal vesicles (acidosomes) are involved in phagosome acidification in Paramecium. J Cell Biol 97:566–570

    Article  PubMed  CAS  Google Scholar 

  41. Allen RD (1988) Cytology. In: Goertz HD (ed) Paramecium. Springer, Berlin, pp 4–40

    Google Scholar 

  42. Allen RD, Fok AK (2000) Membrane trafficking and processing in Paramecium. Int Rev Cytol 198:277–317

    Article  PubMed  CAS  Google Scholar 

  43. Apps DK (1997) Membrane and soluble proteins of adrenal chromaffin granules. Semin Cell Dev Biol 8:121–131

    Article  PubMed  CAS  Google Scholar 

  44. Lumpert CJ, Glas-Albrecht R, Eisenmann E, Plattner H (1992) Secretory organelles of Paramecium cells (trichocysts) are not remarkably acidic compartments. J Histochem Cytochem 40:153–160

    PubMed  CAS  Google Scholar 

  45. Garreau de Loubresse N, Gautier MC, Sperling L (1994) Immature secretory granules are not acidic in Paramecium: Implications for sorting to the regulated pathway. Biol Cell 82:139–147

    Article  Google Scholar 

  46. Gautier MC, Garreau de Loubresse N, Madeddu L, Sperling L (1994) Evidence for defects in membrane traffic in Paramecium secretory mutants unable to produce functional storage granules. J Cell Biol 124:893–902

    Article  PubMed  CAS  Google Scholar 

  47. Madeddu L, Gautier MC, Le Caer JP, Garreau de Loubresse N, Sperling L (1994) Protein processing and morphogenesis of secretory granules in Paramecium. Biochimie 76:329–335

    Article  PubMed  CAS  Google Scholar 

  48. Plattner, Kissmehl (2003) Molecular aspects of membrane trafficking in Paramecium. Int Rev Cytol 232:185–216

    Article  PubMed  CAS  Google Scholar 

  49. Taupenot L, Harper KL, O’Connor DT (2005) Role of H-ATPase-mediated acidification in sorting and release of the regulated secretory protein chromogranin A. Evidence for a vesiculogenic function. J Biol Chem 280:3885–3897

    Article  PubMed  CAS  Google Scholar 

  50. Waterford SD, Kolodecik TR, Thrower EC, Gorelick FS (2005) Vacuolar ATPase regulates zymogen activation in pancreatic acini. J Biol Chem 280:5430–5434

    Article  PubMed  CAS  Google Scholar 

  51. Arvan P, Castle JD (1986) Isolated secretion granules from parotid glands of chronically stimulated rats possess an alkaline internal pH and inward-directed H pump activity. J Cell Biol 103:1257–1267

    Article  PubMed  CAS  Google Scholar 

  52. Hiesinger PR, Fayyazuddin A, Metha SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao V, Zhou Y, Kunz J, Bellen HJ (2005) The v-ATPase V0 subunit a1 is required for a late step in synapic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  PubMed  CAS  Google Scholar 

  53. Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961

    Article  PubMed  CAS  Google Scholar 

  54. Sun-Wada GH, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y (2006) The a3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells. J. Cell Sci. 119:4531–4540

    Article  PubMed  CAS  Google Scholar 

  55. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    Article  PubMed  CAS  Google Scholar 

  56. Wright MV, Van Houten JL (1990) Characterization of a putative Ca2-transporting Ca2-ATPase in the pellicles of Paramecium tetraurelia. Biochim Biophys Acta 1029:241–251

    Article  PubMed  CAS  Google Scholar 

  57. Hauser K, Pavlovic N, Kissmehl R, Plattner H (1998) Molecular characterization of a sarco(endo)plasmic reticulum Ca2-ATPase gene from Paramecium tetraurelia and localization of its gene product to sub-plasmalemmal calcium stores. Biochem J 334:31–38

    PubMed  CAS  Google Scholar 

  58. Kissmehl R, Huber S, Kottwitz B, Hauser K, Plattner H (1998) Subplasmalemmal Ca-stores in Paramecium tetraurelia. Identification and characterisation of a sarco(endo)plasmic reticulum-like Ca2-ATPase by phosphoenzyme intermediate formation and its inhibition by caffeine. Cell Calcium 24:193–203

    Article  PubMed  CAS  Google Scholar 

  59. Plattner H, Floetenmeyer M, Kissmehl R, Pavlovic N, Hauser K, Momayezi M, Braun N, Tack J, Bachmann L (1999) Microdomain arrangement of the SERCA-type Ca2 pump (Ca2-ATPase) in subplasmalemmal calcium stores of Paramecium cells. J Histochem Cytochem 47:841–854

    PubMed  CAS  Google Scholar 

  60. Hauser K, Pavlovic N, Klauke N, Geissinger D, Plattner H (2000) Green fluorescent protein-tagged sarco(endo)plasmic reticulum Ca2-ATPase overexpression in Paramecium cells: isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects. Mol Microbiol 37:773–787

    Article  PubMed  CAS  Google Scholar 

  61. Mohamed I, Husser M, Sehring I, Hentschel J, Hentschel C, Plattner H (2003) Refilling of cortical calcium stores in Paramecium cells: in situ analysis in correlation with store-operated calcium influx. Cell Calcium 34:87–96

    Article  PubMed  CAS  Google Scholar 

  62. Ladenburger EM, Korn I, Kasielke N, Wassmer T, Plattner H (2006) An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system. J Cell Sci 119:3705–3717

    Article  PubMed  CAS  Google Scholar 

  63. Xu T, Vasilyeva E, Forgac M (1999) Subunit interactions in the clathrin-coated vesicle vacuolar (H(+))-ATPase complex. J Biol Chem 274:28909–28915

    Article  PubMed  CAS  Google Scholar 

  64. Inoue T, Forgac M (2005) Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. J Biol Chem 280:27896–27903

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Jean Cohen, Janine Beisson, and Linda Sperling (CNRS, Gif-sur-Yvette, France) for many helpful discussions and for access to the Paramecium Genome Database. We gratefully acknowledge the support from Genoscope, France, for sharing sequence information with us during sequencing and assembling the Paramecium genome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wassmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassmer, T., Sehring, I.M., Kissmehl, R. et al. The V-ATPase in Paramecium: functional specialization by multiple gene isoforms. Pflugers Arch - Eur J Physiol 457, 599–607 (2009). https://doi.org/10.1007/s00424-007-0417-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0417-x

Keywords

Navigation