Skip to main content
Log in

Substance P stimulates CFTR-dependent fluid secretion by mouse tracheal submucosal glands

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The mucosa of the proximal airways defends itself and the lower airways from inhaled irritants such as capsaicinoids, allergens, and infections by several mechanisms. Sensory nerves monitor the luminal microenvironment and release the tachykinin substance P (SP) to stimulate mucus secretion. Here, we have studied the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in SP stimulation by comparing mouse airway submucosal gland responses in wild-type (WT) and CFTR−/− mice. Capsaicinoids (chili pepper oil) increased fluid secretion by glands from WT mice five-fold, and this response was abolished by exposing the basolateral aspect of the tracheas to L-732,138 (10 μmol/l), a specific antagonist of the neurokinin-1 receptor. Secretion was also stimulated 25-fold by basolateral application of SP, and this response was strongly inhibited by the CFTR inhibitor CFTRinh172. In contrast, submucosal glands from CFTR knockout mice failed to secrete when stimulated by SP (1 μmol/l), although those from wild-type control littermates were responsive. SP stimulation of wild-type glands was also abolished by clotrimazole (25 μmol/l), a blocker of Ca2+-activated K+ channels. These results indicate that SP mediates local responses to capsaicinoids through a mechanism involving coordinated activation of CFTR and K+ channels. To our knowledge, this is the first study in which CFTR-dependent responses to substance P have been directly demonstrated. Since CFTR regulation is qualitatively similar in human and mouse glands, loss of this local regulation in CF may contribute to reduced innate defenses in CF airways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pilewski JM, Frizzell RA (1999) Role of CFTR in airway disease. Physiol Rev 79:S215–S255

    PubMed  CAS  Google Scholar 

  2. Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79:S23–S45

    PubMed  CAS  Google Scholar 

  3. Reid L (1960) Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 15:132–141

    Article  PubMed  CAS  Google Scholar 

  4. Trout L, Corboz MR, Ballard ST (2001) Mechanism of substance P-induced liquid secretion across bronchial epithelium. Am J Physiol Lung Cell Mol Physiol 281:L639–L645

    PubMed  CAS  Google Scholar 

  5. Jayaraman S, Joo NS, Reitz B et al (2001) Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity. Proc Natl Acad Sci U S A 98:8119–8123

    Article  PubMed  CAS  Google Scholar 

  6. Joo NS, Irokawa T, Wu JV et al (2002) Absent secretion to vasoactive intestinal peptide in cystic fibrosis airway glands. J Biol Chem 277:50710–50715

    Article  PubMed  CAS  Google Scholar 

  7. Joo NS, Irokawa T, Robbins RC et al (2006) Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands. J Biol Chem 281:7392–7398

    Article  PubMed  CAS  Google Scholar 

  8. Verkman AS, Song Y, Thiagarajah JR (2003) Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am J Physiol Cell Physiol 284:C2–C15

    PubMed  CAS  Google Scholar 

  9. Wine JJ, Joo NS (2004) Submucosal glands and airway defense. Proc Am Thorac Soc 1:47–53

    Article  PubMed  CAS  Google Scholar 

  10. Salinas D, Haggie PM, Thiagarajah JR et al (2005) Submucosal gland dysfunction as a primary defect in cystic fibrosis. FASEB J 19:431–433

    PubMed  CAS  Google Scholar 

  11. Song Y, Salinas D, Nielson DW et al (2006) Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol 290:C741–C749

    Article  PubMed  CAS  Google Scholar 

  12. Phipps RJ, Richardson PS (1976) The effects of irritation at various levels of the airway upon tracheal mucus secretion in the cat. J Physiol 261:563–581

    PubMed  CAS  Google Scholar 

  13. Schultz HD, Davis B, Coleridge HM et al (1991) Cigarette smoke in lungs evokes reflex increase in tracheal submucosal gland secretion in dogs. J Appl Physiol 71:900–909

    PubMed  CAS  Google Scholar 

  14. Schultz HD, Roberts AM, Bratcher C et al (1985) Pulmonary C-fibers reflexly increase secretion by tracheal submucosal glands in dogs. J Appl Physiol 58:907–910

    PubMed  CAS  Google Scholar 

  15. McBride RK, Oberdoerster G, Marin MG (1991) Effects of ozone on the cholinergic secretory responsiveness of ferret tracheal glands. Environ Res 55:79–90

    Article  PubMed  CAS  Google Scholar 

  16. Ianowski JP, Choi JY, Wine JJ et al (2007) Mucus secretion by single tracheal submucosal glands from normal and CFTR knock-out mice. J Physiol 580:301–314

    Article  PubMed  CAS  Google Scholar 

  17. Hunter DD, Undem BJ (1999) Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 159:1943–1948

    PubMed  CAS  Google Scholar 

  18. Widdicombe JG (2003) Overview of neural pathways in allergy and asthma. Pulm Pharmacol Ther 16:23–30

    Article  PubMed  CAS  Google Scholar 

  19. Nemeth J, Helyes Z, Oroszi G et al (2003) Role of voltage-gated cation channels and axon reflexes in the release of sensory neuropeptides by capsaicin from isolated rat trachea. Eur J Pharmacol 458:313–318

    Article  PubMed  CAS  Google Scholar 

  20. McDonald DM (1987) Neurogenic inflammation in the respiratory tract: actions of sensory nerve mediators on blood vessels and epithelium of the airway mucosa. Am Rev Respir Dis 136:S65–S72

    PubMed  CAS  Google Scholar 

  21. Phillips JE, Hey JA, Corboz MR (2003) Tachykinin NK3 and NK1 receptor activation elicits secretion from porcine airway submucosal glands. Br J Pharmacol 138:254–260

    Article  PubMed  CAS  Google Scholar 

  22. Haxhiu MA, Haxhiu-Poskurica B, Moracic V et al (1990) Reflex and chemical responses of trachea; submucosal glands in piglets. Respir Physiol 82:267–278

    PubMed  CAS  Google Scholar 

  23. Ballard ST, Spadafora D (2007) Fluid secretion by submucosal glands of the tracheobronchial airways. Resp Physiol Neurobiol 159:271–277

    Article  CAS  Google Scholar 

  24. Haston CK, McKerlie C, Newbigging S et al (2002) Detection of modifier loci influencing the lung phenotype of cystic fibrosis knockout mice. Mamm Genome 13:605–613

    Article  PubMed  CAS  Google Scholar 

  25. Kent G, Iles R, Bear CE et al (1997) Lung disease in mice with cystic fibrosis. J Clin Invest 100:3060–3069

    Article  PubMed  CAS  Google Scholar 

  26. Joo NS, Wu JV, Krouse ME et al (2001) Optical method for quantifying rates of mucus secretion from single submucosal glands. Am J Physiol Lung Cell Mol Physiol 281:L458–L468

    PubMed  CAS  Google Scholar 

  27. Quinton PM (1979) Composition and control of secretions from tracheal bronchial submucosal glands. Nature 279:551–552

    Article  PubMed  CAS  Google Scholar 

  28. Szallasi A (2001) Vanilloid receptor ligands: hopes and realities for the future. Drugs Aging 18:561–73

    Article  PubMed  CAS  Google Scholar 

  29. Solway J, Leff AR (1991) Sensory neuropeptides and airway function. J Appl Physiol 71:2077–2087

    PubMed  CAS  Google Scholar 

  30. Barnes PJ (2001) Neurogenic inflammation in the airways. Respir Physiol 125:145–154

    Article  PubMed  CAS  Google Scholar 

  31. Webber SE, Lim JC, Widdicombe JG (1991) The effects of calcitonin gene-related peptide on submucosal gland secretion and epithelial albumin transport in the ferret trachea in vitro. Br J Pharmacol 102:79–84

    PubMed  CAS  Google Scholar 

  32. Shimura S, Sasaki T, Okayama H et al (1987) Effect of substance P on mucus secretion of isolated submucosal gland from feline trachea. J Appl Physiol 63:646–653

    PubMed  CAS  Google Scholar 

  33. Haston CK, Cory S, Lafontaine L et al (2006) Strain-dependent pulmonary gene expression profiles of a cystic fibrosis mouse model. Physiol Genomics 25:336–345

    Article  PubMed  CAS  Google Scholar 

  34. Smith PL, Frizzell RA (1984) Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J Membr Biol 77:187–199

    Article  PubMed  CAS  Google Scholar 

  35. McCann JD, Welsh MJ (1990) Basolateral K+ channels in airway epithelia. II. Role in Cl secretion and evidence for two types of K+ channel. Am J Physiol 258:L343–L348

    PubMed  CAS  Google Scholar 

  36. Devor DC, Singh AK, Bridges RJ et al (1996) Modulation of Cl secretion by benzimidazolones. II. Coordinate regulation of apical GCl and basolateral GK. Am J Physiol 271:L785–795

    PubMed  CAS  Google Scholar 

  37. Devor DC, Singh AK, Lambert LC et al (1999) Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol 113:743–760

    Article  PubMed  CAS  Google Scholar 

  38. Moon S, Singh M, Krouse ME et al (1997) Calcium-stimulated Cl secretion in Calu-3 human airway cells requires CFTR. Am J Physiol 273:L1208–L1219

    PubMed  CAS  Google Scholar 

  39. Moser AJ, Gangopadhyay A, Bradbury NA et al (2007) Electrogenic bicarbonate secretion by prairie dog gallbladder. Am J Physiol Gastrointest Liver Physiol 292:G1683–G1694

    Article  PubMed  CAS  Google Scholar 

  40. Geppetti P, Bertrand C, Bacci E et al (1993) Characterization of tachykinin receptors in ferret trachea by peptide agonists and nonpeptide antagonists. Am J Physiol Lung Cell Mol Physiol 265:L164–169

    CAS  Google Scholar 

  41. Meini S, Mak JC, Rohde JA et al (1993) Tachykinin control of ferret airways: mucus secretion, bronchoconstriction and receptor mapping. Neuropeptides 24:81–89

    Article  PubMed  CAS  Google Scholar 

  42. Wagner U, Fehmann HC, Bredenbroker D et al (1999) Effects of selective tachykinin-receptor antagonists on tachykinin-induced airway mucus secretion in the rat. Neuropeptides 33:55–61

    Article  PubMed  CAS  Google Scholar 

  43. Rogers DF, Aursudkij B, Barnes PJ (1989) Effects of tachykinins on mucus secretion in human bronchi in vitro. Eur J Pharmacol 174:283–286

    Article  PubMed  CAS  Google Scholar 

  44. Ballard ST, Inglis SK (2004) Liquid secretion properties of airway submucosal glands. J Physiol 556:1–10

    Article  PubMed  CAS  Google Scholar 

  45. Grandordy BM, Frossard N, Rhoden KJ et al (1988) Tachykinin-induced phosphoinositide breakdown in airway smooth muscle and epithelium: relationship to contraction. Mol Pharmacol 33:515–519

    PubMed  CAS  Google Scholar 

  46. Jones LM, Michell RH (1978) Enhanced phosphatidylinositol breakdown as a Ca-independent response of rat parotid fragments to substance P. Biochem Soc Trans 6:1035–1037

    PubMed  CAS  Google Scholar 

  47. Hanley MR, Lee CM, Jones LM et al (1980) Similar effects of substance P and related peptides on salivation and phosphatidylinositide turnover in rat salivary glands. Mol Pharmacol 18:78–83

    PubMed  CAS  Google Scholar 

  48. Bristow DR, Suman-Chauhan N, Watling KJ (1987) Effect of tachykinins on inositol phospholipids hydrolysis in slices of urinary bladder. Br J Pharmacol 90:211–218

    PubMed  CAS  Google Scholar 

  49. Khawaja AM, Rogers DF (1996) Tachykinins: receptor to effector. Int J Biochem Cell Biol 28:721–738

    Article  PubMed  CAS  Google Scholar 

  50. Lee JR, Limberis MP, Hennessy MF (2007) Optical imaging of Ca2+-evoked fluid secretion by murine nasal submucosal gland serous acinar cells. J Physiol 582:1099–1124

    Article  PubMed  CAS  Google Scholar 

  51. Petersen OH, Maruyama Y (1984) Calcium-activated potassium channels and their role in secretion. Nature 307:693–696

    Article  PubMed  CAS  Google Scholar 

  52. Choi JY, Joo NS, Krouse ME et al (2007) Synergistic airway gland secretion to vasoactive intestinal peptide and carbachol is lost in cystic fibrosis. J Clin Invest 117:3118–3127

    Article  PubMed  CAS  Google Scholar 

  53. Hanley MR, Lee CM, Michell RH et al (1980) Similar effects of substance P and related peptides on salivation and on phosphatidylinositol turnover in rat salivary glands. Mol Pharmacol 18:78–83

    PubMed  CAS  Google Scholar 

  54. Tachado SD, Akhtar RA, Yousufzai SY et al (1991) Species differences in the effects of substance P on inositol trisphosphate accumulation and cyclic AMP formation, and on contraction in isolated iris sphincter of the mammalian eye: differences in receptor density. Exp Eye Res 53:729–739

    Article  PubMed  CAS  Google Scholar 

  55. Nakajima Y, Tsuchida K, Negishi M et al (1992) Direct linkage of three tachykinin receptors to stimulation of both phosphatidylinositol hydrolysis and cyclic AMP cascades in transfected Chinese hamster ovary cells. J Biol Chem 267:2437–2442

    PubMed  CAS  Google Scholar 

  56. Fukuhara S, Shimizu M, Matsushima H et al (1998) Signaling pathways via NK1 receptors and their desensitization in an AR42J cell line. Peptides 19:1349–1357

    Article  PubMed  CAS  Google Scholar 

  57. Nagaki M, Ishihara H, Shimura S et al (1994) Tachykinins induce a [Ca2+]i rise in the acinar cells of feline tracheal submucosal gland. Respir Physiol 98:111–120

    Article  PubMed  CAS  Google Scholar 

  58. De Swert KO, Joos GF (2006) Extending the understanding of sensory neuropeptides. Eur J Pharmacol 533:171–181

    Article  PubMed  CAS  Google Scholar 

  59. Kreda SM, Mall M, Mengos A et al (2005) Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 16:2154–2167

    Article  PubMed  CAS  Google Scholar 

  60. Wine JJ (2007) Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci 33:35–54

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mauri Krouse (Stanford) for stimulating discussions, Dr. Christina Haston (McGill) for providing the cftr+/− breeders, and Melanie Lafleur and Josée Paradis at McGill for much helpful technical advice concerning the mice. JPI was supported by a Fellowship from the Canadian CF Foundation and JYC by Cystic Fibrosis Research Inc. The work was supported by the CCFF and Canadian Institutes of Health Research through the BREATHE program and by grants from the Cystic Fibrosis Foundation (USA) and by the NIDDK of the National Institutes of Health (DK-51817).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Ianowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ianowski, J.P., Choi, J.Y., Wine, J.J. et al. Substance P stimulates CFTR-dependent fluid secretion by mouse tracheal submucosal glands. Pflugers Arch - Eur J Physiol 457, 529–537 (2008). https://doi.org/10.1007/s00424-008-0527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0527-0

Keywords

Navigation