Skip to main content
Log in

KCNQ-encoded channels regulate Na+ transport across H441 lung epithelial cells

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

H441 cells are a model of absorptive airway epithelia that are characterised by a pronounced apical Na+ flux through amiloride-sensitive Na+ channels. The flux of Na+ is intimately linked to Na+ handling by the cell as well as the membrane potential across the apical membrane. As KCNQ-encoded K+ channels influence chloride secretion in gastrointestinal epithelia, the goal of the present study was to ascertain the expression of KCNQ genes in H441 cells and determine the functional role of the expression products. Message for KCNQ3 and KCNQ5 was detected by RT-polymerase chain reaction and the translated proteins were observed by immunocytochemistry. Ussing experiments showed that the pan-KCNQ channel blocker XE991, but not KCNQ1 selective blockers, reduced the short circuit current and the amiloride-sensitive component. These data show for the first time that potassium channels encoded by KCNQ3 or KCNQ5 are crucial determinants of epithelial Na+ flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bernard K, Bogliolo S, Soriani O, Ehrenfeld J (2003) Modulation of calcium-dependent chloride secretion by basolateral SK4-like channels in a human bronchial cell line. J Membr Biol 196:15–31

    Article  PubMed  CAS  Google Scholar 

  2. Bett G, Morales M, Beahm D, Duffey M, Rasmusson R (2006) Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel. J Physiol 576:755–767

    Article  PubMed  CAS  Google Scholar 

  3. Boucher R, Stutts M, Knowles ML, Cantley L, Gatzy J (1986) Na+ transport in cystic fibrosis respiratory epithelia. J Clin Invest 78:1245–1252

    Article  PubMed  CAS  Google Scholar 

  4. Cowley EA, Linsdell P (2002) Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3. J Physiol 538:747–757

    Article  PubMed  CAS  Google Scholar 

  5. Dedek K, Waldegger S (2001) Colocalisation of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract. Pflugers Arch 442:896–902

    Article  PubMed  CAS  Google Scholar 

  6. Grahammer F, Warth R, Barhanin J, Bleich M, Hug MJ (2001) The small conductance K+ channel, KCNQ1: expression, function, and subunit composition in murine trachea. J Biol Chem 276:42268–42275

    Article  PubMed  CAS  Google Scholar 

  7. Inglis SK, Brown SG, Constable MJ, McTavish N, Olver RE, Wilson SM (2007) A Ba2+-resistant, acid-sensitive K+ conductance in Na+ -absorbing H441 human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 292:L1304–L1312

    Article  PubMed  CAS  Google Scholar 

  8. Jensen HS, Callo K, Jespersen T, Jensen BS, Olesen SP (2005) The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. Brain Res Mol Brain Res 139:52–62

    Article  PubMed  CAS  Google Scholar 

  9. Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1:21–30

    Article  PubMed  CAS  Google Scholar 

  10. Jespersen T, Rasmussen HB, Grunnet M, Jensen HS, Angelo K, Dupuis DS, Vogel LK, Jorgensen NK, Klaerke DA, Olesen SP (2004) Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. J Cell Sci 117:4517–4526

    Article  PubMed  CAS  Google Scholar 

  11. Kunzelmann K, Kathöfer S, Hipper A, Gruenert D, Gregner R (1996) Culture-dependent expression of Na+ conductances in airway epithelial cells. Pflugers Arch 431:578–586

    Article  PubMed  CAS  Google Scholar 

  12. Lazrak A, Matalon S (2003) cAMP-induced changes of apical membrane potentials of confluent H441 monolayers. Am J Physiol 285:L443–L450

    CAS  Google Scholar 

  13. Lerche C, Bruhova I, Lerche H, Steinmeyer K, Wei A, Strutz-Seebohm N, Lang F, Busch A, Zhorov B, Seebohm G (2007) Chromanol 293B binding in KCNQ1 (Kv7.1) channels involves electrostatic interactions with a potassium ion in the selectivity filter. Mol Pharmacol 71:1503–1515, Erratum in: Mol Pharmacol. 2007 Sep;1572(1503):1796

    Article  PubMed  CAS  Google Scholar 

  14. MacVinish LJ, Guo Y, Dixon AK, Murrell-Lagnado RD, Cuthbert AW (2001) Xe991 reveals differences in K(+) channels regulating chloride secretion in murine airway and colonic epithelium. Mol Pharmacol 60:753–760

    PubMed  CAS  Google Scholar 

  15. Mall M, Gonska T, Thomas J, Schreiber R, Seydewitz HH, Kuehr J, Brandis M, Kunzelmann K (2003) Modulation of Ca2+-activated Cl secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res 53:608–618

    Article  PubMed  CAS  Google Scholar 

  16. Mall M, Wissner A, Schreiber R, Kuehr J, Seydewitz HH, Brandis M, Greger R, Kunzelmann K (2000) Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(−) secretion in human airway epithelia. Am J Respir Cell Mol Biol 23:283–289

    PubMed  CAS  Google Scholar 

  17. Monaghan AS, Baines DL, Kemp PJ, Olver RE (1997) Inwardly rectifying K+ currents of alveolar type II cells isolated from fetal guinea-pig lung: regulation by G protein- and Mg2+-dependent pathways. Pflugers Arch 433:294–303

    Article  PubMed  CAS  Google Scholar 

  18. Monaghan AS, Baines DL, Muimo R, Olver RE (1999) Inwardly rectifying K+ currents in fetal type II alveolar cells: regulation by protein kinase A and protein phosphatases. Pflügers Archiv European Journal of Physiology 438:371–377

    Article  PubMed  CAS  Google Scholar 

  19. Moser SL, Harron SA, Crack J, Fawcett JP, Cowley EA (2008) Multiple KCNQ potassium channel subtypes mediate basal anion secretion from the human airway epithelial cell line Calu-3. J Membr Biol 221:153–163

    Article  PubMed  CAS  Google Scholar 

  20. Roura-Ferrer M, Sole L, Martinez-Marmol R, Villalonga N, Felipe A (2008) Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation. Biochem Biophys Res Commun 369:1094–1097

    Article  PubMed  CAS  Google Scholar 

  21. Schenzer A, Friedrich T, Pusch Saftig P, Jentsch TJ, Grotzinger J, Schwake M (2005) Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 25:5051–5060

    Article  PubMed  CAS  Google Scholar 

  22. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch T (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–199

    Article  PubMed  CAS  Google Scholar 

  23. Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275:24089–24095

    Article  PubMed  CAS  Google Scholar 

  24. Staub O, Abriel H, Plant P, Ishikawa T, Kanelis V, Saleki R, Horisberger JD, Schild L, Rotin D (2000) Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int 57:809–815

    Article  PubMed  CAS  Google Scholar 

  25. Thomas CP, Campbell JR, Wright PJ, Husted RF (2004) Cyclic AMP-stimulated Na+ transport in H441 distal lung epithelial cells: role of protein kinase A, phospatidyl inositol 3-kinase and sgk1. Am J Physiol 287:L843–L851

    CAS  Google Scholar 

  26. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F (2005) KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci USA 102:17864–17869

    Article  PubMed  CAS  Google Scholar 

  27. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–1893

    Article  PubMed  CAS  Google Scholar 

  28. Wickenden AD, Zou A, Wagoner PK, Jegla T (2001) Characterization of KCNQ5/Q3 potassium channels expressed in mammalian cells. Br J Pharmacol 132:381–384

    Article  PubMed  CAS  Google Scholar 

  29. Wilson SM, Brown SG, McTavish N, McNeill RP, Husband EM, Inglis SK, Olver RE, Clunes MT (2006) Expression of intermediate-conductance, Ca2+-activated K+ channel (KCNN4) in H441 human distal airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 291:L957–L965

    Article  PubMed  CAS  Google Scholar 

  30. Woollhead AM, Baines DL (2006) Forskolin-induced cell shrinkage and apical translocation of functional EGFP-human alpha ENaC in H441 lung epithelial cell monolayers. J Biol Chem 281:5158–5168

    Article  PubMed  CAS  Google Scholar 

  31. Woollhead AM, Scott JW, Hardie DG, Baines DL (2005) Phenformin and 5-aminoimidazole-4-carboxamide-1-{beta}-d-ribofuranoside (AICAR) activation of AMP-activated protein kinase inhibits transepithelial Na+ transport across H441 lung cells. J Physiol 566:781–792

    Article  PubMed  CAS  Google Scholar 

  32. Woollhead AM, Sivagnanasundaram J, Kalsi KK, Pucovsky V, Pellatt LJ, Scott JW, Mustard KJ, Hardie DG, Baines DL (2007) Pharmacological activators of AMP-activated protein kinase have different effects on Na(+) transport processes across human lung epithelial cells. Br J Pharmacol 151:1204–1215

    Article  PubMed  CAS  Google Scholar 

  33. Yeung SY, Pucovsky V, Moffatt JD, Saldanha L, Schwake M, Ohya S, Greenwood IA (2007) Molecular expression and pharmacological identification of a role for K(v)7 channels in murine vascular reactivity. Br J Pharmacol 151:758–770

    Article  PubMed  CAS  Google Scholar 

  34. Yeung SYM, Lange W, Schwake M, Greenwood I (2008a) Expression profile and charecterisation of a truncated KCNQ5 splice varient. Biochem Biophys Res Commun 371(4):741–746

    Article  PubMed  CAS  Google Scholar 

  35. Yeung SYM, Schwake M, Pucovsky V, Greenwood I (2008b) Bimodal effects of the Kv7 channel activator retigabine on vascular K+ currents. Br J Pharmacol (in press)

Download references

Acknowledgments

This work was supported by the BHF (Dr. I. Greenwood) and BBSRC grant no. BB/E013597/1 (Dr. D. Baines). The authors would also like to thank Dr. A. Davis for her help with the Western blots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Baines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwood, I.A., Yeung, S.Y.M., Hettiarachi, S. et al. KCNQ-encoded channels regulate Na+ transport across H441 lung epithelial cells. Pflugers Arch - Eur J Physiol 457, 785–794 (2009). https://doi.org/10.1007/s00424-008-0557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0557-7

Keywords

Navigation