Skip to main content

Advertisement

Log in

Connexins, pannexins, innexins: novel roles of “hemi-channels”

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI (2000) Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105:161–171

    Article  PubMed  CAS  Google Scholar 

  2. Aleksic B, Ishihara R, Takahashi N, Maeno N, Ji X, Saito S, Inada T, Ozaki N (2007) Gap junction coding genes and schizophrenia: a genetic association study. J Hum Genet 52:498–501

    Article  PubMed  CAS  Google Scholar 

  3. Alves LA, Coutinho-Silva R, Persechini PM, Spray DC, Savino W, Campos de Carvalho AC (1996) Are there functional gap junctions or junctional hemichannels in macrophages? Blood 88:328–334

    PubMed  CAS  Google Scholar 

  4. Ashcroft FM (2000) Ion channels and disease. Academic press, San Diego USA, p 481

    Google Scholar 

  5. Azanza MJ, Pes N, Pérez-Bruzón RN, Aisa J, Raso M, Junquera C, Lahoz JM, Maestú C, Martínez-Ciriano C, Pérez-Castejón C, Vera-Gil A, Del Moral A (2007) Localization of connexins in neurons and glia cells of the Helix aspersa suboesophageal brain ganglia by immunocytochemistry. Histol Histopathol 22:497–504

    PubMed  CAS  Google Scholar 

  6. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  PubMed  CAS  Google Scholar 

  7. Bao L, Sachs F, Dahl G (2004) Connexins are mechanosensitive. Am J Physiol Cell Physiol 287:C1389–C1395

    Article  PubMed  CAS  Google Scholar 

  8. Bao L, Samuels S, Locovei S, Macagno ER, Muller KJ, Dahl G (2007) Innexins form two types of channels. FEBS Lett 581:5703–5708

    Article  PubMed  CAS  Google Scholar 

  9. Bao X, Lee SC, Reuss L, Altenberg GA (2007) Change in permeant size selectivity by phosphorylation of connexin 43 gap-junctional hemichannels by PKC. Proc Natl Acad Sci U S A 104:4919–4924

    Article  PubMed  CAS  Google Scholar 

  10. Bauer R, Lehmann C, Fuss B, Eckardt F, Hoch M (2002) The Drosophila gap junction channel gene innexin 2 controls foregut development in response to Wingless signalling. J Cell Sci 115:1859–1867

    PubMed  CAS  Google Scholar 

  11. Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–47

    Article  PubMed  CAS  Google Scholar 

  12. Beyer EC, Steinberg TH (1991) Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J Biol Chem 266:7971–7974

    PubMed  CAS  Google Scholar 

  13. Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–31743

    Article  PubMed  CAS  Google Scholar 

  14. Boassa D, Qiu F, Dahl G, Sosinsky G (2008) Trafficking dynamics of glycosylated pannexin 1 proteins. Cell Commun Adhes 15:119–132

    Article  PubMed  CAS  Google Scholar 

  15. Bröer S, Wagner CA (2003) Membrane transporter diseases. Kluwer Academic, New York USA, p 404

    Google Scholar 

  16. Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  PubMed  CAS  Google Scholar 

  17. Bruzzone R, Dermietzel R (2006) Structure and function of gap junctions in the developing brain. 326:239–248

  18. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    Article  PubMed  CAS  Google Scholar 

  19. Buisman HP, Steinberg TH, Fischbarg J, Silverstein SC, Vogelzang SA, Ince C, Ypey DL, Leijh PC (1988) Extracellular ATP induces a large nonselective conductance in macrophage plasma membranes. Proc Natl Acad Sci USA 85:7988–7992

    Article  PubMed  CAS  Google Scholar 

  20. Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K (2006) Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA 103:9726–9731

    Article  PubMed  CAS  Google Scholar 

  21. Chadjichristos CE, Kwak BR (2007) Connexins: new genes in atherosclerosis. Ann Med 39:402–411

    Article  PubMed  CAS  Google Scholar 

  22. Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR (2005) Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 1711:197–207

    Article  PubMed  CAS  Google Scholar 

  23. Chanson M, Roy C, Spray DC (1994) Voltage-dependent gap junctional conductance in hepatopancreatic cells of Procambarus clarkii. Am J Physiol 266:C569–C577

    PubMed  CAS  Google Scholar 

  24. Chaumont S, Khakh BS (2008) Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels. Proc Natl Acad Sci USA 105:12063–12068

    Article  PubMed  CAS  Google Scholar 

  25. Chen B, Liu Q, Ge Q, Xie J, Wang ZW (2007) UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr Biol 17:1334–1339

    Article  PubMed  CAS  Google Scholar 

  26. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106

    Article  PubMed  CAS  Google Scholar 

  27. Chuang CF, Vanhoven MK, Fetter RD, Verselis VK, Bargmann CI (2007) An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell 129:787–799

    Article  PubMed  CAS  Google Scholar 

  28. Cockcroft S, Gomperts BD (1979) Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 296:229–243

    PubMed  CAS  Google Scholar 

  29. Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, Janel N, Meda P, Petit C (2007) Connexin30 deficiency causes instrastrial fluid–blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci USA 104:6229–6234

    Article  PubMed  CAS  Google Scholar 

  30. Collings A, Islam MS, Juonala M, Rontu R, Kähönen M, Hutri-Kähönen N, Laitinen T, Marniemi J, Viikari JS, Raitakari OT, Lehtimäki TJ (2007) Associations between connexin37 gene polymorphism and markers of subclinical atherosclerosis: the Cardiovascular Risk in Young Finns study. Atherosclerosis 195:379–384

    Article  PubMed  CAS  Google Scholar 

  31. Combettes L, Dumont M, Berthon B, Erlinger S, Claret M (1988) Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem 263:2299–2303

    PubMed  CAS  Google Scholar 

  32. Contreras JE, Sáez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    Article  PubMed  CAS  Google Scholar 

  33. Contreras JE, Sánchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Sáez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500

    Article  PubMed  CAS  Google Scholar 

  34. Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC (2004) Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 47:290–303

    Article  PubMed  CAS  Google Scholar 

  35. Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804

    PubMed  CAS  Google Scholar 

  36. Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci USA 101:12364–12369

    Article  PubMed  CAS  Google Scholar 

  37. Curtin KD, Zhang Z, Wyman RJ (2002) Gap junction proteins are not interchangeable in development of neural function in the Drosophila visual system. J Cell Sci 115:3379–3388

    PubMed  CAS  Google Scholar 

  38. Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life 58:409–419

    Article  PubMed  CAS  Google Scholar 

  39. de Boer TP, van der Heyden MA (2005) Xenopus connexins: how frogs bridge the gap. Differentiation 73:330–340

    Article  PubMed  Google Scholar 

  40. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 11(25):34–44

    Article  CAS  Google Scholar 

  41. De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu MT, Hoogenraad CC, Bijman J, Ruigrok TJ, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y (2003) Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 23:4700–4711

    PubMed  Google Scholar 

  42. DeVries SH, Schwartz EA (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol 445:201–230

    PubMed  CAS  Google Scholar 

  43. Dobrowolski R, Sommershof A, Willecke K (2007) Some oculodentodigital dysplasia-associated Cx43 mutations cause increased hemichannel activity in addition to deficient gap junction channels. J Membr Biol 219:9–17

    Article  PubMed  CAS  Google Scholar 

  44. Duffy HS, John GR, Lee SC, Brosnan CF, Spray DC (2000) Reciprocal regulation of the junctional proteins claudin-1 and connexin43 by interleukin-1beta in primary human fetal astrocytes. J Neurosci 20:RC114

    PubMed  CAS  Google Scholar 

  45. Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI (2006) Expression of pannexin family of proteins in the retina. FEBS Lett 580:2178–2182

    Article  PubMed  CAS  Google Scholar 

  46. Eltzschig HK, Eckle T, Mager A, Küper N, Karcher C, Weissmüller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–1108

    Article  PubMed  CAS  Google Scholar 

  47. Enkvist MO, McCarthy KD (1992) Activation of protein kinase C blocks astroglial gap junction communication and inhibits the spread of calcium waves. J Neurochem 59:519–526

    Article  PubMed  CAS  Google Scholar 

  48. Epstein ML, Gilula NB (1977) A study of communication specificity between cells in culture. J Cell Biol 75:769–787

    Article  PubMed  CAS  Google Scholar 

  49. Faria RX, Defarias FP, Alves LA (2005) Are second messengers crucial for opening the pore associated with P2X7 receptor? Am J Physiol Cell Physiol 288:C260–C271

    Article  PubMed  CAS  Google Scholar 

  50. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883

    PubMed  CAS  Google Scholar 

  51. Finbow ME, Buultjens TE, Lane NJ, Shuttleworth J, Pitts JD (1984) Isolation and characterisation of arthropod gap junctions. EMBO J 3:2271–2278

    PubMed  CAS  Google Scholar 

  52. Fortes FS, Pecora IL, Persechini PM, Hurtado S, Costa V, Coutinho-Silva R, Braga MB, Silva-Filho FC, Bisaggio RC, De Farias FP, Scemes E, De Carvalho AC, Goldenberg RC (2004) Modulation of intercellular communication in macrophages: possible interactions between GAP junctions and P2 receptors. J Cell Sci 117:4717–4726

    Article  PubMed  CAS  Google Scholar 

  53. Fraser SE, Green CR, Bode HR, Gilula NB (1987) Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science 237:49–55

    Article  PubMed  CAS  Google Scholar 

  54. Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC (2004) CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J Biol Chem 279:36943–36950

    Article  PubMed  CAS  Google Scholar 

  55. Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279:36931–36942

    Article  PubMed  CAS  Google Scholar 

  56. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214

    Article  PubMed  CAS  Google Scholar 

  57. Gerido DA, DeRosa AM, Richard G, White TW (2007) Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am J Physiol Cell Physiol 293:C337–C345

    Article  PubMed  CAS  Google Scholar 

  58. Giaume C, Spira ME, Korn H (1980) Uncoupling of invertebrate electrotonic synapses by carbon dioxide. Neurosci Lett 17:197–202

    Article  PubMed  CAS  Google Scholar 

  59. Gilula NB, Satir P (1971) Septate and gap junctions in molluscan gill epithelium. J Cell Biol 51:869–872

    Article  PubMed  CAS  Google Scholar 

  60. González D, Gómez-Hernández JM, Barrio LC (2006) Species specificity of mammalian connexin-26 to form open voltage-gated hemichannels. FASEB J 20:2329–2338

    Article  PubMed  Google Scholar 

  61. Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    Article  PubMed  CAS  Google Scholar 

  62. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  63. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    PubMed  CAS  Google Scholar 

  64. Harris A, Locke D (2008) Connexin biology: the role of gap junction in disease. The Humana, Totowa, NJ, USA, pp

  65. Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    PubMed  CAS  Google Scholar 

  66. Harrison DG, Cai H (2003) Endothelial control of vasomotion and nitric oxide production. Cardiol Clin 21:289–302

    Article  PubMed  Google Scholar 

  67. Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93:13268–13273

    Article  PubMed  CAS  Google Scholar 

  68. Hempelmann A, Heils A, Sander T (2006) Confirmatory evidence for an association of the connexin-36 gene with juvenile myoclonic epilepsy. Epilepsy Res 71:223–228

    Article  PubMed  CAS  Google Scholar 

  69. Hervé JC (2005) The connexins, part II. Biochim Biophys Acta 1711:97–246

    Article  PubMed  CAS  Google Scholar 

  70. Hervé JC (2004) The connexins, part I. Biochim Biophys Acta 1662:1–172

    Article  PubMed  CAS  Google Scholar 

  71. Hervé JC (2005) The connexins, part III. Biochem Biophys Acta 1719:1–160

    Article  PubMed  CAS  Google Scholar 

  72. Hickman SE, Semrad CE, Silverstein SC (1996) P2Z purinoceptors. Ciba Found Symp 198:71–83

    PubMed  CAS  Google Scholar 

  73. Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    Article  PubMed  CAS  Google Scholar 

  74. Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31:487–495

    Article  PubMed  CAS  Google Scholar 

  75. Hua VB, Chang AB, Tchieu JH, Kumar NM, Nielsen PA, Saier MH (2003) Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol 194:59–76

    Article  PubMed  CAS  Google Scholar 

  76. Huang Y, Grinspan JB, Abrams CK, Scherer SS (2007) Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 55:46–56

    Article  PubMed  Google Scholar 

  77. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds. Proc Natl Acad Sci USA 104:6436–6441

    Article  PubMed  CAS  Google Scholar 

  78. Iacobas DA, Iacobas S, Spray DC (2007) Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94:169–185

    Article  PubMed  CAS  Google Scholar 

  79. Iglesias R, Locovei S, Roque AP, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor–Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–C760

    Article  PubMed  CAS  Google Scholar 

  80. Iovine MK, Gumpert AM, Falk MM, Mendelson TC (2008) Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels. FEBS Lett 582:165–170

    Article  PubMed  CAS  Google Scholar 

  81. Jiang H, Zhu AG, Mamczur M, Falck JR, Lerea KM, McGiff JC (2007) Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids. Br J Pharmacol 151:1033–1040

    Article  PubMed  CAS  Google Scholar 

  82. Jiang JX, Gu S (2005) Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta 1711:208–214

    Article  PubMed  CAS  Google Scholar 

  83. John GR, Lee SC, Song X, Rivieccio M, Brosnan CF (2005) IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia 49:161–176

    Article  PubMed  Google Scholar 

  84. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  PubMed  CAS  Google Scholar 

  85. Johnston MF, Simon SA, Ramón F (1980) Interaction of anaesthetics with electrical synapses. Nature 286:498–500

    Article  PubMed  CAS  Google Scholar 

  86. Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K + release. Am J Physiol Cell Physiol 286:C1100–C1108

    Article  PubMed  CAS  Google Scholar 

  87. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711

    Article  PubMed  CAS  Google Scholar 

  88. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Núñez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443

    Article  PubMed  CAS  Google Scholar 

  89. Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC (2007) The role of connexins in controlling cell growth and gene expression. Prog Biophys Mol Biol 94:245–264

    Article  PubMed  CAS  Google Scholar 

  90. Kleopa KA, Scherer SS (2006) Molecular genetics of X-linked Charcot-Marie-Tooth disease. Neuromolecular Med 8:107–122

    Article  PubMed  CAS  Google Scholar 

  91. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872

    Article  PubMed  CAS  Google Scholar 

  92. Kretz M, Maass K, Willecke K (2004) Expression and function of connexins in the epidermis, analyzed with transgenic mouse mutants. Eur J Cell Biol 83:647–654

    Article  PubMed  CAS  Google Scholar 

  93. Lai CP, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67:1545–1554

    Article  PubMed  CAS  Google Scholar 

  94. Laird DW (2008) Closing the gap on autosomal dominant connexin-26 and connexin-43 mutants linked to human disease. J Biol Chem 283:2997–3001

    Article  PubMed  CAS  Google Scholar 

  95. Landesman Y, White TW, Starich TA, Shaw JE, Goodenough DA, Paul DL (1999) Innexin-3 forms connexin-like intercellular channels. J Cell Sci 112:2391–2396

    PubMed  CAS  Google Scholar 

  96. Larsen WJ (1977) Structural diversity of gap junctions. A review. Tissue Cell 9:373–394

    Article  CAS  Google Scholar 

  97. Leithe E, Sirnes S, Omori Y, Rivedal E (2006) Downregulation of gap junctions in cancer cells. Crit Rev Oncog 12:225–256

    PubMed  Google Scholar 

  98. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG (1996) Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–1030

    Article  PubMed  CAS  Google Scholar 

  99. Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695

    Article  PubMed  CAS  Google Scholar 

  100. Lin R, Martyn KD, Guyette CV, Lau AF, Warn-Cramer BJ (2006) v-Src tyrosine phosphorylation of connexin43: regulation of gap junction communication and effects on cell tranformation. Cell Commun Adhes 13:199–216

    PubMed  CAS  Google Scholar 

  101. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  102. Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ (2006) Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54:343–357

    Article  PubMed  Google Scholar 

  103. Liu TF, Li HY, Atkinson MM, Johnson RG (1996) Comparison of lucifer yellow leakage and cell-to-cell transfer following intracellular injection in normal and antisense Novikoff cells under treatment with low extracellular Ca2+. Meth Find Exp Clin Pharmacol 18:493–497

    CAS  Google Scholar 

  104. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  105. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581:483–488

    Article  PubMed  CAS  Google Scholar 

  106. Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    Article  PubMed  CAS  Google Scholar 

  107. Lomax RB, Camello C, Van Coppenolle F, Petersen OH, Tepikin AV (2002) Basal and physiological Ca2+ leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons. J Biol Chem 277:26479–26485

    Article  PubMed  CAS  Google Scholar 

  108. Mas C, Taske N, Deutsch S, Guipponi M, Thomas P, Covanis A, Friis M, Kjeldsen MJ, Pizzolato GP, Villemure JG, Buresi C, Rees M, Malafosse A, Gardiner M, Antonarakis SE, Meda P (2004) Association of the connexin36 gene with juvenile myoclonic epilepsy. J Med Genet 41:e93–e98

    Article  PubMed  CAS  Google Scholar 

  109. Meda P, Spray DC (2000) Gap junction function. Adv Mol Cell Biol 30:263–322

    Article  CAS  Google Scholar 

  110. Medler K (2008) Signaling mechanisms controlling taste cell function. Crit Rev Eukaryot Gene Expr 18:125–137

    PubMed  CAS  Google Scholar 

  111. Même W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB J 20:494–496

    PubMed  Google Scholar 

  112. Mire P, Nasse J, Venable-Thibodeaux S (2000) Gap junctional communication in the vibration-sensitive response of sea anemones. Hear Res 144:109–123

    Article  PubMed  CAS  Google Scholar 

  113. Morita M, Saruta C, Kozuka N, Okubo Y, Itakura M, Takahashi M, Kudo Y (2007) Dual regulation of astrocyte gap junction hemichannels by growth factors and a pro-inflammatory cytokine via the mitogen-activated protein kinase cascade. Glia 55:508–515

    Article  PubMed  Google Scholar 

  114. Musil LS, Goodenough DA (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357–1374

    Article  PubMed  CAS  Google Scholar 

  115. Naus CC, Bond SL, Bechberger JF, Rushlow W (2000) Identification of genes differentially expressed in C6 glioma cells transfected with connexin43. Brain Res Brain Res Rev 32:259–266

    Article  PubMed  CAS  Google Scholar 

  116. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  117. Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110

    Article  PubMed  CAS  Google Scholar 

  118. Oh S, Verselis VK, Bargiello TA (2008) Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel. J Physiol 586:2445–2461

    Article  PubMed  CAS  Google Scholar 

  119. Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359:241–244

    Article  PubMed  CAS  Google Scholar 

  120. Pahujaa M, Anikin M, Goldberg GS (2007) Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells. Exp Cell Res 313:4083–4090

    Article  PubMed  CAS  Google Scholar 

  121. Panchin YV (2005) Evolution of gap junction proteins—the pannexin alternative. J Exp Biol 208:1415–1419

    Article  PubMed  CAS  Google Scholar 

  122. Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 45:259–264

    Article  PubMed  CAS  Google Scholar 

  123. Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089

    Article  PubMed  CAS  Google Scholar 

  124. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  125. Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783

    Article  PubMed  CAS  Google Scholar 

  126. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    PubMed  CAS  Google Scholar 

  127. Petersen MB, Willems PJ (2006) Non-syndromic, autosomal-recessive deafness. Clin Genet 69:371–392

    Article  PubMed  CAS  Google Scholar 

  128. Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245

    Article  PubMed  CAS  Google Scholar 

  129. Phelan P, Starich TA (2001) Innexins get into the gap. Bioessays 23:388–396

    Article  PubMed  CAS  Google Scholar 

  130. Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862

    Article  PubMed  CAS  Google Scholar 

  131. Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14:2288–2303

    Article  PubMed  CAS  Google Scholar 

  132. Prochnow N, Dermietzel R (2008) Connexons and cell adhesion: a romantic phase. Histochem Cell Biol 130:71–77

    Article  PubMed  CAS  Google Scholar 

  133. Qu Y, Dahl G (2004) Accessibility of Cx46 hemichannels for uncharged molecules and its modulation by voltage. Biophys J 86:1502–1509

    Article  PubMed  CAS  Google Scholar 

  134. Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074

    Article  PubMed  CAS  Google Scholar 

  135. Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS ONE 2:e712

    Article  PubMed  CAS  Google Scholar 

  136. Ravier MA, Güldenagel M, Charollais A, Gjinovci A, Caille D, Söhl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807

    Article  PubMed  CAS  Google Scholar 

  137. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792

    Article  PubMed  CAS  Google Scholar 

  138. Retamal MA, Schalper KA, Shoji KF, Bennett MV, Sáez JC (2007) Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci USA 104:8322–8327

    Article  PubMed  CAS  Google Scholar 

  139. Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12

    Article  PubMed  CAS  Google Scholar 

  140. Richard G (2005) Connexin disorders of the skin. Clin Dermatol 23:23–32

    Article  PubMed  Google Scholar 

  141. Rodríguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, García-Dorado D (2007) The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol 94:219–232

    Article  PubMed  CAS  Google Scholar 

  142. Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS (2007) Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26:657–667

    Article  PubMed  CAS  Google Scholar 

  143. Sabag AD, Dagan O, Avraham KB (2005) Connexins in hearing loss: a comprehensive overview. J Basic Clin Physiol Pharmacol 16:101–116

    PubMed  CAS  Google Scholar 

  144. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    Article  PubMed  CAS  Google Scholar 

  145. Scemes E (2008) Modulation of astrocyte P2Y1 receptors by the carboxyl terminal domain of the gap junction protein Cx43. Glia 56:145–153

    Article  PubMed  Google Scholar 

  146. Scemes E, Bavamian S, Charollais A, Spray DC, Meda P (2008) Lack of “hemichannel” activity in insulin-producing cells. Cell Commun Adhes 15:143–154

    Article  PubMed  CAS  Google Scholar 

  147. Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208

    Article  PubMed  Google Scholar 

  148. Schalper KA, Palacios-Prado N, Orellana JA, Sáez JC (2008) Currently used methods for identification and characterization of hemichannels. Cell Commun Adhes 15:207–218

    Article  PubMed  CAS  Google Scholar 

  149. Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martínez AD, Sáez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19:3501–3513

    Article  PubMed  CAS  Google Scholar 

  150. Schilling WP, Wasylyna T, Dubyak GR, Humphreys BD, Sinkins WG (1999) Maitotoxin and P2Z/P2X7 purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol 277:C766–C776

    PubMed  CAS  Google Scholar 

  151. Schock SC, Leblanc D, Hakim AM, Thompson CS (2008) ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368:138–144

    Article  PubMed  CAS  Google Scholar 

  152. Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266

    Article  PubMed  CAS  Google Scholar 

  153. Severs NJ, Dupont E, Thomas N, Kaba R, Rothery S, Jain R, Sharpey K, Fry CH (2006) Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol 42:228–242

    Article  PubMed  CAS  Google Scholar 

  154. Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394

    Article  PubMed  CAS  Google Scholar 

  155. Shields CR, Klooster J, Claassen Y, Ul-Hussain M, Zoidl G, Dermietzel R, Kamermans M (2007) Retinal horizontal cell-specific promoter activity and protein expression of zebrafish connexin 52.6 and connexin 55.5. J Comp Neurol 501:765–779

    Article  PubMed  CAS  Google Scholar 

  156. Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720

    Article  PubMed  CAS  Google Scholar 

  157. Socolar SJ, Politoff AL (1971) Uncoupling cell junctions in a glandular epithelium by depolarizing current. Science 172:492–494

    Article  PubMed  CAS  Google Scholar 

  158. Söhl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200

    Article  PubMed  CAS  Google Scholar 

  159. Söhl G, Odermatt B, Maxeiner S, Degen J, Willecke K (2004) New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res Rev 47:245–259

    Article  PubMed  CAS  Google Scholar 

  160. Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires CFTR activity. Am J Physiol 275:H1726–H1732

    PubMed  CAS  Google Scholar 

  161. Spray DC, Harris AL, Bennett MV (1979) Voltage dependence of junctional conductance in early amphibian embryos. Science 204:432–434

    Article  PubMed  CAS  Google Scholar 

  162. Spray DC, Iacobas DA (2007) Organizational principles of the connexin-related brain transcriptome. J Membr Biol 218:39–47

    Article  PubMed  CAS  Google Scholar 

  163. Spray DC, Ye ZC, Ramson BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54:758–773

    Article  PubMed  Google Scholar 

  164. Srinivas M, Calderon DP, Kronengold J, Verselis VK (2006) Regulation of connexin hemichannels by monovalent cations. J Gen Physiol 127:67–75

    Article  PubMed  CAS  Google Scholar 

  165. Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK (2005) Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J 88:1725–1739

    Article  PubMed  CAS  Google Scholar 

  166. Stebbings LA, Todman MG, Phelan P, Bacon JP, Davies JA (2000) Two Drosophila innexins are expressed in overlapping domains and cooperate to form gap-junction channels. Mol Biol Cell 11:2459–2470

    PubMed  CAS  Google Scholar 

  167. Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP4− permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262:8884–8888

    PubMed  CAS  Google Scholar 

  168. Stoka AM (1999) Phylogeny and evolution of chemical communication: an endocrine approach. J Mol Endocrinol 22:207–225

    Article  PubMed  CAS  Google Scholar 

  169. Stong BC, Chang Q, Ahmad S, Lin X (2006) A novel mechanism for connexin 26 mutation linked deafness: cell death caused by leaky gap junction hemichannels. Laryngoscope 116:2205–2210

    Article  PubMed  CAS  Google Scholar 

  170. Stout C, Charles A (2003) Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43:265–273

    Article  PubMed  Google Scholar 

  171. Stout C, Goodenough DA, Paul DL (2004) Connexins: functions without junctions. 16:507–512

  172. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  PubMed  CAS  Google Scholar 

  173. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  PubMed  CAS  Google Scholar 

  174. Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E (2004) Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation. Glia 48:217–229

    Article  PubMed  CAS  Google Scholar 

  175. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  PubMed  CAS  Google Scholar 

  176. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281:21362–21368

    Article  PubMed  CAS  Google Scholar 

  177. Tao L, Harris AL (2007) 2-aminoethoxydiphenyl borate directly inhibits channels composed of connexin26 and/or connexin32. Mol Pharmacol 71:570–579

    Article  PubMed  CAS  Google Scholar 

  178. Tatham PE, Lindau M (1990) ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells. J Gen Physiol 95:459–476

    Article  PubMed  CAS  Google Scholar 

  179. Tazuke SI, Schulz C, Gilboa L, Fogarty M, Mahowald AP, Guichet A, Ephrussi A, Wood CG, Lehmann R, Fuller MT (2002) A germline-specific gap junction protein required for survival of differentiating early germ cells. Development 129:2529–2539

    PubMed  CAS  Google Scholar 

  180. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    Article  PubMed  CAS  Google Scholar 

  181. Tong D, Li TY, Naus KE, Bai D, Kidder GM (2007) In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells. J Cell Sci 120:4016–4024

    Article  PubMed  CAS  Google Scholar 

  182. Tong JJ, Ebihara L (2006) Structural determinants for the differences in voltage gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels. Biophys J 91:2142–2154

    Article  PubMed  CAS  Google Scholar 

  183. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

  184. Trexler EB, Bukauskas FF, Bennett MV, Bargiello TA, Verselis VK (1999) Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J Gen Physiol 113:721–742

    Article  PubMed  CAS  Google Scholar 

  185. Trinkaus JP (1984) Cells into organs. The forces that shape the embryo, 2nd edn. Prentice-Hall Inc, Englewood USA, p 543

    Google Scholar 

  186. Van Coppenolle F, Vanden Abeele F, Slomianny C, Flourakis M, Hesketh J, Dewailly E, Prevarskaya N (2004) Ribosome–translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 117:4135–4142

    Article  PubMed  CAS  Google Scholar 

  187. Vanden Abeele F, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, Prevarskaya N (2006) Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 174:535–546

    Article  PubMed  CAS  Google Scholar 

  188. Verselis VK, Trexler EB, Bukauskas FF (2000) Connexin hemichannels and cell-cell channels: comparison of properties. Braz J Med Biol Res 33:379–389

    Article  PubMed  CAS  Google Scholar 

  189. Wang EC, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422

    Article  PubMed  CAS  Google Scholar 

  190. Wang J, Ma M, Locovei S, Keane RW, Dahl G (2007) Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 293:C1112–C1119

    Article  PubMed  CAS  Google Scholar 

  191. Watanabe M, Iwashita M, Ishii M, Kurachi Y, Kawakami A, Kondo S, Okada N (2006) Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep 7:893–897

    Article  PubMed  CAS  Google Scholar 

  192. White TW, Paul DL (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61:283–310

    Article  PubMed  CAS  Google Scholar 

  193. Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR (2006) Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12:950–954

    Article  PubMed  CAS  Google Scholar 

  194. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  195. Yen MR, Saier MH (2007) Gap junctional proteins of animals: the innexin/pannexin superfamily. 94:5–14

  196. Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71:92–100

    Article  PubMed  CAS  Google Scholar 

  197. Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE (2007) Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J Biol Chem 282:8895–8904

    Article  PubMed  CAS  Google Scholar 

  198. Zampighi GA (2003) Distribution of connexin50 channels and hemichannels in lens fibers: a structural approach. Cell Commun Adhes 10:265–270

    Article  PubMed  CAS  Google Scholar 

  199. Zhang L, Deng T, Sun Y, Liu K, Yang Y, Zheng X (2008) Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation. J Neurosci Res 86:2281–2291

    Article  PubMed  CAS  Google Scholar 

  200. Zimniak P, Little JM, Radominska A, Oelberg DG, Anwer MS, Lester R (1991) Taurine-conjugated bile acids act as Ca2+ ionophores. Biochemistry 30:8598–8604

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work of our teams is supported by grants from the National Institute of Health (HD32573, NS41282, NS52245), the Swiss National Science Foundation (310000–122430), the Juvenile Diabetes Research Foundation (1-2007-158), Novo Nordisk, and the European Union (FP7-222980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Meda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scemes, E., Spray, D.C. & Meda, P. Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch - Eur J Physiol 457, 1207–1226 (2009). https://doi.org/10.1007/s00424-008-0591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0591-5

Keywords

Navigation