Skip to main content
Log in

Slow inactivation of the NaV1.4 sodium channel in mammalian cells is impeded by co-expression of the β1 subunit

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In response to sustained depolarization or prolonged bursts of activity in spiking cells, sodium channels enter long-lived non-conducting states from which recovery at hyperpolarized potentials occurs over hundreds of milliseconds to seconds. The molecular basis for this slow inactivation remains unknown, although many functional domains of the channel have been implicated. Expression studies in Xenopus oocytes and mammalian cell lines have suggested a role for the accessory β1 subunit in slow inactivation, but the effects have been variable. We examined the effects of the β1 subunit on slow inactivation of skeletal muscle (NaV1.4) sodium channels expressed in HEK cells. Co-expression of the β1 subunit impeded slow inactivation elicited by a 30-s depolarization, such that the voltage dependence was right shifted (depolarized) and recovery was hastened. Mutational studies showed this effect was dependent upon the extracellular Ig-like domain, but was independent of the intracellular C-terminal tail. Furthermore, the β1 effect on slow inactivation was shown to be independent of the negative coupling between fast and slow inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balser JR, Nuss HB, Chiamvimonvat N, Perez-Garcia MT, Marban E, Tomaselli GF (1996) External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol (Lond) 494(Pt 2):431–442

    CAS  Google Scholar 

  2. Benitah JP, Chen Z, Balser JR, Tomaselli GF, Marban E (1999) Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. J Neurosci 19(5):1577–1585

    PubMed  CAS  Google Scholar 

  3. Cannon SC (1996) Slow inactivation of sodium channels: more than just a laboratory curiosity. Biophys J 71(1):5–7

    Article  PubMed  CAS  Google Scholar 

  4. Chahine M, Bennett PB, George AL, Horn R (1994) Functional expression and properties of the human skeletal muscle sodium channel. Pflugers Arch—Eur J Physiol 427(1–2):136–142

    Article  CAS  Google Scholar 

  5. Chen CF, Cannon SC (1995) Modulation of Na+ channel inactivation by the β1 subunit: a deletion analysis. Pflügers Archiv 431:186–195

    Article  PubMed  CAS  Google Scholar 

  6. Choi KL, Aldrich RW, Yellen G (1991) Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A 88(12):5092–5095

    Article  PubMed  CAS  Google Scholar 

  7. Featherstone DE, Richmond JE, Ruben PC (1996) Interaction between fast and slow inactivation in SkM1 sodium channels. Biophys J 71:3098–3109

    Article  PubMed  CAS  Google Scholar 

  8. Hayward LJ, Brown RH, Cannon SC (1996) Inactivation defects caused by myotonia-associated mutations in the sodium channel III–IV linker. J Gen Physiol 107(5):559–576

    Article  PubMed  CAS  Google Scholar 

  9. Hayward LJ, Brown RH, Cannon SC (1997) Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Biophys J 72:1204–1219

    Article  PubMed  CAS  Google Scholar 

  10. Isom LL (2001) Sodium channel beta subunits: anything but auxiliary. Neuroscientist 7(1):42–54

    PubMed  CAS  Google Scholar 

  11. Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256(5058):839–842

    Article  PubMed  CAS  Google Scholar 

  12. Isom LL, Scheuer T, Brownstein AB, Ragsdale DS, Murphy BJ, Catterall WA (1995) Functional co-expression of the beta 1 and type IIA alpha subunits of sodium channels in a mammalian cell line. J Biol Chem 270(7):3306–3312

    Article  PubMed  CAS  Google Scholar 

  13. Jurman ME, Boland LM, Liu Y, Yellen G (1994) Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques 17(5):876–881

    PubMed  CAS  Google Scholar 

  14. Kontis KJ, Goldin AL (1997) Sodium channel inactivation is altered by substitution of voltage sensor positive charges. J Gen Physiol 110(4):403–413

    Article  PubMed  CAS  Google Scholar 

  15. Krafte DS, Volberg WA, Rapp L, Kallen RG, Lalik PH, Ciccarelli RB (1995) Stable expression and functional characterization of a human cardiac Na+ channel gene in mammalian cells. J Mol Cell Cardiol 27(2):823–830

    Article  PubMed  CAS  Google Scholar 

  16. Liu Y, Jurman ME, Yellen G (1996) Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16(4):859–867

    Article  PubMed  CAS  Google Scholar 

  17. Makita N, Bennett PB, George AL (1996) Molecular determinants of beta 1 subunit-induced gating modulation in voltage-dependent Na+ channels. J Neurosci 16(22):7117–7127

    PubMed  CAS  Google Scholar 

  18. McClatchey AI, Cannon SC, Slaugenhaupt SA, Gusella JF (1993) The cloning and expression of a sodium channel beta 1-subunit cDNA from human brain. Hum Mol Genet 2(6):745–749

    Article  PubMed  CAS  Google Scholar 

  19. McCormick KA, Isom LL, Ragsdale D, Smith D, Scheuer T, Catterall WA (1998) Molecular determinants of Na+ channel function in the extracellular domain of the beta1 subunit. J Biol Chem 273(7):3954–3962

    Article  PubMed  CAS  Google Scholar 

  20. Meadows LS, Chen YH, Powell AJ, Clare JJ, Ragsdale DS (2002) Functional modulation of human brain Nav1.3 sodium channels, expressed in mammalian cells, by auxiliary beta 1, beta 2 and beta 3 subunits. Neuroscience 114(3):745–753

    Article  PubMed  CAS  Google Scholar 

  21. Meadows LS, Malhotra J, Loukas A, Thyagarajan V, Kazen-Gillespie KA, Koopman MC, Kriegler S, Isom LL, Ragsdale DS (2002) Functional and biochemical analysis of a sodium channel beta1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J Neurosci 22(24):10699–10709

    PubMed  CAS  Google Scholar 

  22. Mitrovic N, George AL, Horn R (2000) Role of domain 4 in sodium channel slow inactivation. J Gen Physiol 115(6):707–718

    Article  PubMed  CAS  Google Scholar 

  23. Moorman JR, Kirsch GE, VanDongen AMJ, Joho RH, Brown AM (1990) Fast and slow gating of sodium channels encoded by a single mRNA. Neuron 4:243–252

    Article  PubMed  CAS  Google Scholar 

  24. Moran O, Nizzari M, Conti F (2000) Endogenous expression of the beta1A sodium channel subunit in HEK-293 cells. FEBS Lett 473(2):132–134

    Article  PubMed  CAS  Google Scholar 

  25. O’Reilly JP, Wang SY, Wang GK (2001) Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels. Biophys J 81(4):2100–2111

    Article  PubMed  CAS  Google Scholar 

  26. Panyi G, Deutsch C (2007) Probing the cavity of the slow inactivated conformation of shaker potassium channels. J Gen Physiol 129(5):403–418

    Article  PubMed  CAS  Google Scholar 

  27. Patton DE, Isom LL, Catterall WA, Goldin AL (1994) The adult rat brain beta 1 subunit modifies activation and inactivation gating of multiple sodium channel alpha subunits. J Biol Chem 269(26):17649–17655

    PubMed  CAS  Google Scholar 

  28. Richmond JE, Featherstone DE, Hartman HA, Ruben PC (1998) Slow inactivation in human cardiac sodium channels. Biophys J 74:2945–2952

    Article  PubMed  CAS  Google Scholar 

  29. Rudy B (1978) Slow Inactivation of the sodium conductance in squid giant axons. Pronase resistance. J Physiol 283:1–21

    CAS  Google Scholar 

  30. Rudy B (1981) Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena. J Physiol 312:531–549

    PubMed  CAS  Google Scholar 

  31. Sandtner W, Szendroedi J, Zarrabi T, Zebedin E, Hilber K, Glaaser I, Fozzard HA, Dudley SC, Todt H (2004) Lidocaine: a foot in the door of the inner vestibule prevents ultra-slow inactivation of a voltage-gated sodium channel. Mol Pharmacol 66(3):648–657

    PubMed  CAS  Google Scholar 

  32. Schauf CL, Pencek TL, Davis FA (1976) Slow sodium inactivation in Myxicola axons. Evidence for a second inactive state. Biophys J 16(7):771–778

    Article  PubMed  CAS  Google Scholar 

  33. Scheuer T, Auld VJ, Boyd S, Offord J, Dunn R, Catterall WA (1990) Functional properties of rat brain sodium channels expressed in a somatic cell line. Science 247(4944):854–858

    Article  PubMed  CAS  Google Scholar 

  34. Struyk AF, Cannon SC (2002) Slow inactivation does not block the aqueous accessibility to the outer pore of voltage-gated Na channels. J Gen Physiol 120(4):509–516

    Article  PubMed  CAS  Google Scholar 

  35. Todt H, Dudley SC, Kyle JW, French RJ, Fozzard HA (1999) Ultra-slow inactivation in mu1 Na+ channels is produced by a structural rearrangement of the outer vestibule. Biophys J 76(3):1335–1345

    Article  PubMed  CAS  Google Scholar 

  36. Townsend C, Horn R (1997) Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. J Gen Physiol 110:23–33

    Article  PubMed  CAS  Google Scholar 

  37. Ukomadu C, Zhou J, Sigworth FJ, Agnew WS (1992) muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron 8(4):663–676

    Article  PubMed  CAS  Google Scholar 

  38. Valdivia CR, Nagatomo T, Makielski JC (2002) Late Na currents affected by alpha subunit isoform and beta1 subunit co-expression in HEK293 cells. J Mol Cell Cardiol 34(8):1029–1039

    Article  PubMed  CAS  Google Scholar 

  39. Vedantham V, Cannon SC (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys J 78(6):2943–2958

    Article  PubMed  CAS  Google Scholar 

  40. Vilin YY, Fujimoto E, Ruben PC (2001) A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys J 80(5):2221–2230

    Article  PubMed  CAS  Google Scholar 

  41. Vilin YY, Makita N, George AL, Ruben PC (1999) Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys J 77(3):1384–1393

    Article  PubMed  CAS  Google Scholar 

  42. Wallace RH, Wang DW, Singh R, Scheffer IE, George AL, Phillips HA, Saar K, Reis A, Johnson EW, Sutherland GR, Berkovic SF, Mulley JC (1998) Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 19(4):366–370

    Article  PubMed  CAS  Google Scholar 

  43. Wang SY, Wang GK (1997) A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys J 72(4):1633–1640

    Article  PubMed  CAS  Google Scholar 

  44. Wang SY, Wang GK (1998) Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Acad Sci U S A 95(5):2653–2658

    Article  PubMed  CAS  Google Scholar 

  45. Xu R, Thomas EA, Gazina EV, Richards KL, Quick M, Wallace RH, Harkin LA, Heron SE, Berkovic SF, Scheffer IE, Mulley JC, Petrou S (2007) Generalized epilepsy with febrile seizures plus-associated sodium channel beta1 subunit mutations severely reduce beta subunit-mediated modulation of sodium channel function. Neuroscience 148(1):164–174

    Article  PubMed  CAS  Google Scholar 

  46. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9(9):1142–1149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIAMS of the National Institutes of Health (AR42703 to SCC) and the Medical Scientist Training Program (T32 GM08014 to JW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Cannon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, J., Wu, Ff. & Cannon, S.C. Slow inactivation of the NaV1.4 sodium channel in mammalian cells is impeded by co-expression of the β1 subunit. Pflugers Arch - Eur J Physiol 457, 1253–1263 (2009). https://doi.org/10.1007/s00424-008-0600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0600-8

Keywords

Navigation