Skip to main content

Advertisement

Log in

Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na+ channel (ENaC) is the rate-limiting step that governs Na+ absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na+, and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP2. In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adebamiro A, Cheng Y, Rao US, Danahay H, Bridges RJ (2007) A segment of gamma ENaC mediates elastase activation of Na+ transport. J Gen Physiol 130:611–629

    Article  PubMed  CAS  Google Scholar 

  2. Anantharam A, Palmer LG (2007) Determination of epithelial Na+ channel subunit stoichiometry from single-channel conductances. J Gen Physiol 130:55–70

    Article  PubMed  CAS  Google Scholar 

  3. Anderson MP, Sheppard DN, Berger HA, Welsh MJ (1992) Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am J Physiol 263:L1–L14

    PubMed  CAS  Google Scholar 

  4. Andreasen D, Vuagniaux G, Fowler-Jaeger N, Hummler E, Rossier BC (2006) Activation of epithelial sodium channels by mouse channel activating proteases (mCAP) expressed in Xenopus oocytes requires catalytic activity of mCAP3 and mCAP2 but not mCAP1. J Am Soc Nephrol 17:968–976

    Article  PubMed  CAS  Google Scholar 

  5. App EM, King M, Helfesrieder R, Kohler D, Matthys H (1990) Acute and long-term amiloride inhalation in cystic fibrosis lung disease. A rational approach to cystic fibrosis therapy. Am Rev Respir Dis 141:605–612

    PubMed  CAS  Google Scholar 

  6. Bachhuber T, Konig J, Voelcker T, Murle B, Schreiber R, Kunzelmann K (2005) Cl- interference with the epithelial Na+ channel ENaC. J Biol Chem 280:31587–31594

    Article  PubMed  CAS  Google Scholar 

  7. Ballard ST, Spadafora D (2007) Fluid secretion by submucosal glands of the tracheobronchial airways. Respir Physiol Neurobiol 159:271–277

    Article  PubMed  CAS  Google Scholar 

  8. Bangel-Ruland N, Sobczak K, Christmann T, Kentrup D, Langhorst H, Kusche-Vihrog K, Weber WM (2009) Characterization of the epithelial sodium channel delta subunit in human nasal epithelium. Am J Respir Cell Mol Biol 42:498-505

    Google Scholar 

  9. Bartlett JA, Fischer AJ, McCray PB Jr (2008) Innate immune functions of the airway epithelium. Contrib Microbiol 15:147–163

    Article  PubMed  CAS  Google Scholar 

  10. Berdiev BK, Latorre R, Benos DJ, Ismailov II (2001) Actin modifies Ca2+ block of epithelial Na+ channels in planar lipid bilayers. Biophys J 80:2176–2186

    Article  PubMed  CAS  Google Scholar 

  11. Bingle CD, Craven CJ (2002) PLUNC: a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx. Hum Mol Genet 11:937–943

    Article  PubMed  CAS  Google Scholar 

  12. Bonny O, Chraibi A, Loffing J, Jaeger NF, Grunder S, Horisberger JD, Rossier BC (1999) Functional expression of a pseudohypoaldosteronism type I mutated epithelial Na+ channel lacking the pore-forming region of its alpha subunit. J Clin Invest 104:967–974

    Article  PubMed  CAS  Google Scholar 

  13. Boucher RC (1994) Human airway ion transport. Part one. Am J Respir Crit Care Med 150:271–281

    PubMed  CAS  Google Scholar 

  14. Boucher RC (2003) Regulation of airway surface liquid volume by human airway epithelia. Pflugers Arch 445:495–498

    PubMed  CAS  Google Scholar 

  15. Boucher RC (2007) Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med 261:5–16

    Article  PubMed  CAS  Google Scholar 

  16. Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78:1245–1252

    Article  PubMed  CAS  Google Scholar 

  17. Bridges RJ, Newton BB, Pilewski JM, Devor DC, Poll CT, Hall RL (2001) Na+ transport in normal and CF human bronchial epithelial cells is inhibited by BAY 39-9437. Am J Physiol Lung Cell Mol Physiol 281:L16–L23

    PubMed  CAS  Google Scholar 

  18. Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT (2002) Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol Cell Physiol 283:C126–C134

    PubMed  CAS  Google Scholar 

  19. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR (2007) Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem 282:6153–6160

    Article  PubMed  CAS  Google Scholar 

  20. Butterworth MB, Edinger RS, Frizzell RA, Johnson JP (2009) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296:F10–F24

    Article  PubMed  CAS  Google Scholar 

  21. Caldwell RA, Boucher RC, Stutts MJ (2004) Serine protease activation of near-silent epithelial Na+ channels. Am J Physiol Cell Physiol 286:C190–C194

    Article  PubMed  CAS  Google Scholar 

  22. Caldwell RA, Boucher RC, Stutts MJ (2005) Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol 288:L813–L819

    Article  PubMed  CAS  Google Scholar 

  23. Campos MA, Abreu AR, Nlend MC, Cobas MA, Conner GE, Whitney PL (2004) Purification and characterization of PLUNC from human tracheobronchial secretions. Am J Respir Cell Mol Biol 30:184–192

    Article  PubMed  CAS  Google Scholar 

  24. Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, Zielenski J, Durie P (2006) Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 173:1139–1144

    Article  PubMed  CAS  Google Scholar 

  25. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  PubMed  CAS  Google Scholar 

  26. Carattino MD, Passero CJ, Steren CA, Maarouf AB, Pilewski JM, Myerburg MM, Hughey RP, Kleyman TR (2008) Defining an inhibitory domain in the alpha-subunit of the epithelial sodium channel. Am J Physiol Renal Physiol 294:F47–F52

    Article  PubMed  CAS  Google Scholar 

  27. Carrell RW, Owen MC (1985) Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317:730–732

    Article  PubMed  CAS  Google Scholar 

  28. Chambers LA, Rollins BM, Tarran R (2007) Liquid movement across the surface epithelium of large airways. Respir Physiol Neurobiol 159:256–270

    Article  PubMed  CAS  Google Scholar 

  29. Chen LM, Skinner ML, Kauffman SW, Chao J, Chao L, Thaler CD, Chai KX (2001) Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem 276:21434–21442

    Article  PubMed  CAS  Google Scholar 

  30. Chmiel JF, Davis PB (2003) State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? Respir Res 4:8

    Article  PubMed  Google Scholar 

  31. Coakley RD, Grubb BR, Paradiso AM, Gatzy JT, Johnson LG, Kreda SM, O’Neal WK, Boucher RC (2003) Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci U S A 100:16083–16088

    Article  PubMed  CAS  Google Scholar 

  32. Cook DI, Dinudom A, Komwatana P, Young JA (1998) Control of Na+ transport in salivary duct epithelial cells by cytosolic Cl- and Na+. Eur J Morphol 36(Suppl):67–73

    PubMed  Google Scholar 

  33. Coote K, Atherton-Watson HC, Sugar R, Young A, MacKenzie-Beevor A, Gosling M, Bhalay G, Bloomfield G, Dunstan A, Bridges RJ, Sabater JR, Abraham WM, Tully D, Pacoma R, Schumacher A, Harris J, Danahay H (2009) Camostat attenuates airway epithelial sodium channel function in vivo through the inhibition of a channel-activating protease. J Pharmacol Exp Ther 329:764–774

    Article  PubMed  CAS  Google Scholar 

  34. Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME (2008) Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc 5:772–777

    Article  PubMed  Google Scholar 

  35. Danahay H, Jackson AD (2005) Epithelial mucus-hypersecretion and respiratory disease. Curr Drug Targets Inflamm Allergy 4:651–664

    Article  PubMed  CAS  Google Scholar 

  36. Davis CW, Lazarowski E (2008) Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 163:208–213

    Article  PubMed  CAS  Google Scholar 

  37. Davis PB (2006) Cystic fibrosis since 1938. Am J Respir Crit Care Med 173:475–482

    Article  PubMed  Google Scholar 

  38. Delacourt C, Herigault S, Delclaux C, Poncin A, Levame M, Harf A, Saudubray F, Lafuma C (2002) Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol 26:290–297

    PubMed  CAS  Google Scholar 

  39. Devor DC, Pilewski JM (1999) UTP inhibits Na+ absorption in wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol 276:C827–C837

    PubMed  CAS  Google Scholar 

  40. Diakov A, Bera K, Mokrushina M, Krueger B, Korbmacher C (2008) Cleavage in the {gamma}-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels. J Physiol 586:4587-4608

    Google Scholar 

  41. Dijkink L, Hartog A, van Os CH, Bindels RJ (2002) The epithelial sodium channel (ENaC) is intracellularly located as a tetramer. Pflugers Arch 444:549–555

    Article  PubMed  CAS  Google Scholar 

  42. Ding F, Dokholyan NV (2006) Emergence of protein fold families through rational design. PLoS Comput Biol 2:e85

    Article  PubMed  Google Scholar 

  43. Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC (2006) Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 354:241–250

    Article  PubMed  CAS  Google Scholar 

  44. Donaldson SH, Hirsh A, Li DC, Holloway G, Chao J, Boucher RC, Gabriel SE (2002) Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem 277:8338–8345

    Article  PubMed  CAS  Google Scholar 

  45. Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354:229–240

    Article  PubMed  CAS  Google Scholar 

  46. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  PubMed  CAS  Google Scholar 

  47. Galietta LJ (2009) The TMEM16 protein family: a new class of chloride channels? Biophys J 97:3047–3053

    Article  PubMed  CAS  Google Scholar 

  48. Ganz T (2004) Antimicrobial polypeptides. J Leukoc Biol 75:34–38

    Article  PubMed  CAS  Google Scholar 

  49. Garcia-Caballero A, Dang Y, He H, Stutts MJ (2008) ENaC proteolytic regulation by channel-activating protease 2. J Gen Physiol 132:521–535

    Article  PubMed  CAS  Google Scholar 

  50. Garcia-Caballero A, Rasmussen JE, Gaillard E, Watson MJ, Olsen JC, Donaldson SH, Stutts MJ, Tarran R (2009) SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage. Proc Natl Acad Sci U S A 106:11412–11417

    Article  PubMed  Google Scholar 

  51. Garcia MA, Yang N, Quinton PM (2009) Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 119:2613–2622

    Article  PubMed  CAS  Google Scholar 

  52. Gilmore ES, Stutts MJ, Milgram SL (2001) SRC family kinases mediate epithelial Na+ channel inhibition by endothelin. J Biol Chem 276:42610–42617

    Article  PubMed  CAS  Google Scholar 

  53. Gooptu B, Lomas DA (2008) Polymers and inflammation: disease mechanisms of the serpinopathies. J Exp Med 205:1529–1534

    Article  PubMed  CAS  Google Scholar 

  54. Graham A, Hasani A, Alton EW, Martin GP, Marriott C, Hodson ME, Clarke SW, Geddes DM (1993) No added benefit from nebulized amiloride in patients with cystic fibrosis. Eur Respir J 6:1243–1248

    PubMed  CAS  Google Scholar 

  55. Grimbert D, Vecellio L, Delepine P, Attucci S, Boissinot E, Poncin A, Gauthier F, Valat C, Saudubray F, Antonioz P, Diot P (2003) Characteristics of EPI-hNE4 aerosol: a new elastase inhibitor for treatment of cystic fibrosis. J Aerosol Med 16:121–129

    Article  PubMed  CAS  Google Scholar 

  56. Haerteis S, Krueger B, Korbmacher C, Rauh R (2009) The delta-subunit of the epithelial sodium channel (ENaC) enhances channel activity and alters proteolytic ENaC activation. J Biol Chem 284:29024–29040

    Article  PubMed  CAS  Google Scholar 

  57. Hampton TH, Stanton BA (2009) A novel approach to analyze gene expression data demonstrates that the {Delta}F508 mutation in CFTR down regulates the antigen presentation pathway. Am J Physiol Lung Cell Mol Physiol 298:L473-L482

    Google Scholar 

  58. Harris M, Firsov D, Vuagniaux G, Stutts MJ, Rossier BC (2007) A novel neutrophil elastase inhibitor prevents elastase activation and surface cleavage of the epithelial sodium channel expressed in Xenopus laevis oocytes. J Biol Chem 282:58–64

    Article  PubMed  CAS  Google Scholar 

  59. Harris M, Garcia-Caballero A, Stutts MJ, Firsov D, Rossier BC (2008) Preferential assembly of epithelial sodium channel (ENaC) subunits in Xenopus oocytes: role of furin-mediated endogenous proteolysis. J Biol Chem 283:7455–7463

    Article  PubMed  CAS  Google Scholar 

  60. Hartzell HC, Yu K, Xiao Q, Chien LT, Qu Z (2008) Anoctamin / TMEM16 family members are Ca2+-activated Cl- channels. J Physiol 587:2127-2139

    Google Scholar 

  61. Hirsh AJ, Sabater JR, Zamurs A, Smith RT, Paradiso AM, Hopkins S, Abraham WM, Boucher RC (2004) Evaluation of second generation amiloride analogs as therapy for cystic fibrosis lung disease. J Pharmacol Exp Ther 311:929–938

    Article  PubMed  CAS  Google Scholar 

  62. Hirsh AJ, Zhang J, Zamurs A, Fleegle J, Thelin WR, Caldwell RA, Sabater JR, Abraham WM, Donowitz M, Cha B, Johnson KB, St George JA, Johnson MR, Boucher RC (2008) Pharmacological properties of N-(3, 5-diamino-6-chloropyrazine-2-carbonyl)-N′-4-[4-(2, 3-dihydroxypropoxy) phenyl]butyl-guanidine methanesulfonate (552-02), a novel epithelial sodium channel blocker with potential clinical efficacy for cystic fibrosis lung disease. J Pharmacol Exp Ther 325:77–88

    Article  PubMed  CAS  Google Scholar 

  63. Huang P, Gilmore E, Kultgen P, Barnes P, Milgram S, Stutts MJ (2004) Local regulation of cystic fibrosis transmembrane regulator and epithelial sodium channel in airway epithelium. Proc Am Thorac Soc 1:33–37

    Article  PubMed  CAS  Google Scholar 

  64. Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR (2004) Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem 279:18111–18114

    Article  PubMed  CAS  Google Scholar 

  65. Hughey RP, Carattino MD, Kleyman TR (2007) Role of proteolysis in the activation of epithelial sodium channels. Curr Opin Nephrol Hypertens 16:444–450

    Article  PubMed  CAS  Google Scholar 

  66. Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem 278:37073–37082

    Article  PubMed  CAS  Google Scholar 

  67. Inglis SK, Olver RE, Wilson SM (2000) Differential effects of UTP and ATP on ion transport in porcine tracheal epithelium. Br J Pharmacol 130:367–374

    Article  PubMed  CAS  Google Scholar 

  68. Ismailov II, Berdiev BK, Shlyonsky VG, Fuller CM, Prat AG, Jovov B, Cantiello HF, Ausiello DA, Benos DJ (1997) Role of actin in regulation of epithelial sodium channels by CFTR. Am J Physiol 272:C1077–C1086

    PubMed  CAS  Google Scholar 

  69. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    Article  PubMed  CAS  Google Scholar 

  70. Ji HL, Chalfant ML, Jovov B, Lockhart JP, Parker SB, Fuller CM, Stanton BA, Benos DJ (2000) The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel. J Biol Chem 275:27947–27956

    PubMed  CAS  Google Scholar 

  71. Ji HL, Su XF, Kedar S, Li J, Barbry P, Smith PR, Matalon S, Benos DJ (2006) Delta-subunit confers novel biophysical features to alpha beta gamma-human epithelial sodium channel (ENaC) via a physical interaction. J Biol Chem 281:8233–8241

    Article  PubMed  CAS  Google Scholar 

  72. Kellenberger S, Gautschi I, Schild L (2002) An external site controls closing of the epithelial Na+ channel ENaC. J Physiol 543:413–424

    Article  PubMed  CAS  Google Scholar 

  73. Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, MacLaughlin E, Barker P, Nash M, Quittell L, Boucher R, Knowles MR (1999) Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 341:156–162

    Article  PubMed  CAS  Google Scholar 

  74. Kilburn KH (1968) A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis 98:449–463

    PubMed  CAS  Google Scholar 

  75. Knowles M, Gatzy J, Boucher R (1983) Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest 71:1410–1417

    Article  PubMed  CAS  Google Scholar 

  76. Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109:571–577

    PubMed  CAS  Google Scholar 

  77. Knowles MR, Church NL, Waltner WE, Yankaskas JR, Gilligan P, King M, Edwards LJ, Helms RW, Boucher RC (1990) A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. N Engl J Med 322:1189–1194

    Article  PubMed  CAS  Google Scholar 

  78. Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221:1067–1070

    Article  PubMed  CAS  Google Scholar 

  79. Konstan MW, Hilliard KA, Norvell TM, Berger M (1994) Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 150:448–454

    PubMed  CAS  Google Scholar 

  80. Kosari F, Sheng S, Li J, Mak DO, Foskett JK, Kleyman TR (1998) Subunit stoichiometry of the epithelial sodium channel. J Biol Chem 273:13469–13474

    Article  PubMed  CAS  Google Scholar 

  81. Kreindler JL, Jackson AD, Kemp PA, Bridges RJ, Danahay H (2005) Inhibition of chloride secretion in human bronchial epithelial cells by cigarette smoke extract. Am J Physiol Lung Cell Mol Physiol 288:L894–L902

    Article  PubMed  CAS  Google Scholar 

  82. Kunzelmann K, Bachhuber T, Regeer R, Markovich D, Sun J, Schreiber R (2005) Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2. FASEB J 19:142–143

    PubMed  CAS  Google Scholar 

  83. Kunzelmann K, Beesley AH, King NJ, Karupiah G, Young JA, Cook DI (2000) Influenza virus inhibits amiloride-sensitive Na+ channels in respiratory epithelia. Proc Natl Acad Sci U S A 97:10282–10287

    Article  PubMed  CAS  Google Scholar 

  84. Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82:245–289

    PubMed  CAS  Google Scholar 

  85. Kunzelmann K, Mall M (2003) Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. Am J Respir Med 2:299–309

    PubMed  CAS  Google Scholar 

  86. Kunzelmann K, Mall M, Briel M, Hipper A, Nitschke R, Ricken S, Greger R (1997) The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes. Pflugers Arch 435:178–181

    Article  PubMed  CAS  Google Scholar 

  87. Kunzelmann K, Sun J, Meanger J, King NJ, Cook DI (2007) Inhibition of airway Na+ transport by respiratory syncytial virus. J Virol 81:3714–3720

    Article  PubMed  CAS  Google Scholar 

  88. Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9:262–267

    Article  PubMed  CAS  Google Scholar 

  89. Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC (2004) Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 279:36855–36864

    Article  PubMed  CAS  Google Scholar 

  90. Ma HP, Chou CF, Wei SP, Eaton DC (2007) Regulation of the epithelial sodium channel by phosphatidylinositides: experiments, implications, and speculations. Pflugers Arch 455:169–180

    Article  PubMed  CAS  Google Scholar 

  91. Ma HP, Saxena S, Warnock DG (2002) Anionic phospholipids regulate native and expressed epithelial sodium channel (ENaC). J Biol Chem 277:7641–7644

    Article  PubMed  CAS  Google Scholar 

  92. Machen TE (2006) Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol Cell Physiol 291:C218–C230

    Article  PubMed  CAS  Google Scholar 

  93. Mall M, Bleich M, Greger R, Schreiber R, Kunzelmann K (1998) The amiloride-inhibitable Na+ conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J Clin Invest 102:15–21

    Article  PubMed  CAS  Google Scholar 

  94. Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493

    Article  PubMed  CAS  Google Scholar 

  95. Mason SJ, Paradiso AM, Boucher RC (1991) Regulation of transepithelial ion transport and intracellular calcium by extracellular ATP in human normal and cystic fibrosis airway epithelium. Br J Pharmacol 103:1649–1656

    PubMed  CAS  Google Scholar 

  96. Mo L, Wills NK (2004) ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC). J Membr Biol 202:21–37

    Article  PubMed  CAS  Google Scholar 

  97. Mueller GM, Kashlan OB, Bruns JB, Maarouf AB, Aridor M, Kleyman TR, Hughey RP (2007) Epithelial sodium channel exit from the endoplasmic reticulum is regulated by a signal within the carboxyl cytoplasmic domain of the alpha subunit. J Biol Chem 282:33475–33483

    Article  PubMed  CAS  Google Scholar 

  98. Myerburg MM, Butterworth MB, McKenna EE, Peters KW, Frizzell RA, Kleyman TR, Pilewski JM (2006) Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance: a mechanism for sodium hypersabsorption in cystic fibrosis. J Biol Chem 281:27942-27949

    Google Scholar 

  99. Myerburg MM, McKenna EE, Luke CJ, Frizzell RA, Kleyman TR, Pilewski JM (2008) Prostasin expression is regulated by airway surface liquid volume and is increased in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 294:L932–L941

    Article  PubMed  CAS  Google Scholar 

  100. Nichols D, Chmiel J, Berger M (2008) Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 34:146–162

    Article  PubMed  CAS  Google Scholar 

  101. Noone PG, Bennett WD, Regnis JA, Zeman KL, Carson JL, King M, Boucher RC, Knowles MR (1999) Effect of aerosolized uridine-5′-triphosphate on airway clearance with cough in patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 160:144–149

    PubMed  CAS  Google Scholar 

  102. Okiyoneda T, Lukacs GL (2007) Cell surface dynamics of CFTR: the ins and outs. Biochim Biophys Acta 1773:476–479

    Article  PubMed  CAS  Google Scholar 

  103. Ornatowski W, Poschet JF, Perkett E, Taylor-Cousar JL, Deretic V (2007) Elevated furin levels in human cystic fibrosis cells result in hypersusceptibility to exotoxin A-induced cytotoxicity. J Clin Invest 117:3489–3497

    Article  PubMed  CAS  Google Scholar 

  104. Ovaere P, Lippens S, Vandenabeele P, Declercq W (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34:453–463

    Article  PubMed  CAS  Google Scholar 

  105. Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP, Kleyman TR (2008) Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J Biol Chem 283:36586–36591

    Article  PubMed  CAS  Google Scholar 

  106. Picher M, Boucher RC (2003) Human airway ecto-adenylate kinase. A mechanism to propagate ATP signaling on airway surfaces. J Biol Chem 278:11256–11264

    Article  PubMed  CAS  Google Scholar 

  107. Picher M, Burch LH, Boucher RC (2004) Metabolism of P2 receptor agonists in human airways: implications for mucociliary clearance and cystic fibrosis. J Biol Chem 279:20234–20241

    Article  PubMed  CAS  Google Scholar 

  108. Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    Article  PubMed  CAS  Google Scholar 

  109. Planes C, Caughey GH (2007) Regulation of the epithelial Na+ channel by peptidases. Curr Top Dev Biol 78:23–46

    Article  PubMed  CAS  Google Scholar 

  110. Planes C, Leyvraz C, Uchida T, Angelova MA, Vuagniaux G, Hummler E, Matthay M, Clerici C, Rossier B (2005) In vitro and in vivo regulation of transepithelial lung alveolar sodium transport by serine proteases. Am J Physiol Lung Cell Mol Physiol 288:L1099–L1109

    Article  PubMed  CAS  Google Scholar 

  111. Planes C, Randrianarison NH, Charles RP, Frateschi S, Cluzeaud F, Vuagniaux G, Soler P, Clerici C, Rossier BC, Hummler E (2009) ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1. EMBO Mol Med 2:26–37

    Article  CAS  Google Scholar 

  112. Pochynyuk O, Bugaj V, Stockand JD (2008) Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17:533–540

    Article  PubMed  CAS  Google Scholar 

  113. Puoti A, May A, Canessa CM, Horisberger JD, Schild L, Rossier BC (1995) The highly selective low-conductance epithelial Na channel of Xenopus laevis A6 kidney cells. Am J Physiol 269:C188–C197

    PubMed  CAS  Google Scholar 

  114. Quinton PM (2008) Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372:415–417

    Article  PubMed  CAS  Google Scholar 

  115. Reddy MM, Light MJ, Quinton PM (1999) Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function. Nature 402:301–304

    Article  PubMed  CAS  Google Scholar 

  116. Regnis JA, Zeman KL, Noone PG, Knowles MR, Bennett WD (2000) Prolonged airway retention of insoluble particles in cystic fibrosis versus primary ciliary dyskinesia. Exp Lung Res 26:149–162

    Article  PubMed  CAS  Google Scholar 

  117. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  118. Roberts BL, Markland W, Ley AC, Kent RB, White DW, Guterman SK, Ladner RC (1992) Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc Natl Acad Sci U S A 89:2429–2433

    Article  PubMed  CAS  Google Scholar 

  119. Robinson M, Eberl S, Tomlinson C, Daviskas E, Regnis JA, Bailey DL, Torzillo PJ, Menache M, Bye PT (2000) Regional mucociliary clearance in patients with cystic fibrosis. J Aerosol Med 13:73–86

    Article  PubMed  CAS  Google Scholar 

  120. Rollins BM, Burn M, Coakley RD, Chambers LA, Hirsh AJ, Clunes MT, Lethem MI, Donaldson SH, Tarran R (2008) A2B adenosine receptors regulate the mucus clearance component of the lung’s innate defense system. Am J Respir Cell Mol Biol 39:190–197

    Article  PubMed  CAS  Google Scholar 

  121. Rollins BM, Garcia-Caballero A, Stutts MJ, Tarran R (2010) SPLUNC1 expression reduces surface levels of the epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Channels, in press

  122. Rossier BC (2004) The epithelial sodium channel: activation by membrane-bound serine proteases. Proc Am Thorac Soc 1:4–9

    Article  PubMed  CAS  Google Scholar 

  123. Rossier BC, Stutts MJ (2008) Activation of the epithelial sodium channel (ENaC) by serine proteases. Annu Rev Physiol 71:361-379

    Google Scholar 

  124. Sabater JR, Lee TA, Abraham WM (2005) Comparative effects of salmeterol, albuterol, and ipratropium on normal and impaired mucociliary function in sheep. Chest 128:3743–3749

    Article  PubMed  CAS  Google Scholar 

  125. Sanderson PE (1999) Small, noncovalent serine protease inhibitors. Med Res Rev 19:179–197

    Article  PubMed  CAS  Google Scholar 

  126. Schild L, Schneeberger E, Gautschi I, Firsov D (1997) Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol 109:15–26

    Article  PubMed  CAS  Google Scholar 

  127. Schreiber R, Hopf A, Mall M, Greger R, Kunzelmann K (1999) The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proc Natl Acad Sci U S A 96:5310–5315

    Article  PubMed  CAS  Google Scholar 

  128. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  CAS  Google Scholar 

  129. Sheng S, Li J, McNulty KA, Kieber-Emmons T, Kleyman TR (2001) Epithelial sodium channel pore region. Structure and role in gating. J Biol Chem 276:1326–1334

    Article  PubMed  CAS  Google Scholar 

  130. Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272:25537–25541

    Article  PubMed  CAS  Google Scholar 

  131. Snyder PM (2005) Minireview: regulation of epithelial Na+ channel trafficking. Endocrinology 146:5079–5085

    Article  PubMed  CAS  Google Scholar 

  132. Song W, Liu G, Bosworth CA, Walker JR, Megaw GA, Lazrak A, Abraham E, Sullender WM, Matalon S (2009) Respiratory syncytial virus inhibits lung epithelial Na+ channels by up-regulating inducible nitric-oxide synthase. J Biol Chem 284:7294–7306

    Article  PubMed  CAS  Google Scholar 

  133. Staruschenko A, Medina JL, Patel P, Shapiro MS, Booth RE, Stockand JD (2004) Fluorescence resonance energy transfer analysis of subunit stoichiometry of the epithelial Na+ channel. J Biol Chem 279:27729–27734

    Article  PubMed  CAS  Google Scholar 

  134. Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. Embo J 16:6325–6336

    Article  PubMed  CAS  Google Scholar 

  135. Stockand JD, Staruschenko A, Pochynyuk O, Booth RE, Silverthorn DU (2008) Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 60:620–628

    Article  PubMed  CAS  Google Scholar 

  136. Stokes JB, Sigmund RD (1998) Regulation of rENaC mRNA by dietary NaCl and steroids: organ, tissue, and steroid heterogeneity. Am J Physiol 274:C1699–C1707

    PubMed  CAS  Google Scholar 

  137. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269:847–850

    Article  PubMed  CAS  Google Scholar 

  138. Stutts MJ, Rossier BC, Boucher RC (1997) Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J Biol Chem 272:14037–14040

    Article  PubMed  CAS  Google Scholar 

  139. Suaud L, Yan W, Carattino MD, Robay A, Kleyman TR, Rubenstein RC (2007) Regulatory interactions of N1303K-CFTR and ENaC in Xenopus oocytes: evidence that chloride transport is not necessary for inhibition of ENaC. Am J Physiol Cell Physiol 292:C1553–C1561

    Article  PubMed  CAS  Google Scholar 

  140. Svenningsen P, Uhrenholt TR, Palarasah Y, Skjoedt K, Jensen BL, Skott O (2009) Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations. Am J Physiol Regul Integr Comp Physiol 297:R1733-R1741

    Google Scholar 

  141. Tam EK, Aufderheide J, Hua XY (1994) Chymotryptic activity in perfusates of isolated rat trachea: correlation with mucosal and connective tissue mast cell secretion. Am J Respir Cell Mol Biol 11:321–328

    PubMed  CAS  Google Scholar 

  142. Tarran R, Button B, Boucher RC (2006) Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 68:543–561

    Article  PubMed  CAS  Google Scholar 

  143. Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    Article  PubMed  CAS  Google Scholar 

  144. Tarran R, Grubb BR, Gatzy JT, Davis CW, Boucher RC (2001) The relative roles of passive surface forces and active ion transport in the modulation of airway surface liquid volume and composition. J Gen Physiol 118:223–236

    Article  PubMed  CAS  Google Scholar 

  145. Tarran R, Grubb BR, Parsons D, Picher M, Hirsh AJ, Davis CW, Boucher RC (2001) The CF salt controversy: in vivo observations and therapeutic approaches. Mol Cell 8:149–158

    Article  PubMed  CAS  Google Scholar 

  146. Tarran R, Trout L, Donaldson SH, Boucher RC (2006) Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127:591–604

    Article  PubMed  CAS  Google Scholar 

  147. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766

    Article  PubMed  CAS  Google Scholar 

  148. Tong Q, Stockand JD (2005) Receptor tyrosine kinases mediate epithelial Na(+) channel inhibition by epidermal growth factor. Am J Physiol Renal Physiol 288:F150–161

    Article  PubMed  CAS  Google Scholar 

  149. Tong Z, Illek B, Bhagwandin VJ, Verghese GM, Caughey GH (2004) Prostasin, a membrane-anchored serine peptidase, regulates sodium currents in JME/CF15 cells, a cystic fibrosis airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol 287:L928–L935

    Article  PubMed  CAS  Google Scholar 

  150. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610

    Article  PubMed  CAS  Google Scholar 

  151. Venkatesh VC, Katzberg HD (1997) Glucocorticoid regulation of epithelial sodium channel genes in human fetal lung. Am J Physiol 273:L227–L233

    PubMed  CAS  Google Scholar 

  152. von Kugelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432

    Article  CAS  Google Scholar 

  153. Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC (2002) Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus oocytes. J Gen Physiol 120:191–201

    Article  PubMed  CAS  Google Scholar 

  154. Vuagniaux G, Vallet V, Jaeger NF, Pfister C, Bens M, Farman N, Courtois-Coutry N, Vandewalle A, Rossier BC, Hummler E (2000) Activation of the amiloride-sensitive epithelial sodium channel by the serine protease mCAP1 expressed in a mouse cortical collecting duct cell line. J Am Soc Nephrol 11:828–834

    PubMed  CAS  Google Scholar 

  155. Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M (1995) Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J Biol Chem 270:27411–27414

    Article  PubMed  CAS  Google Scholar 

  156. Weixel KM, Edinger RS, Kester L, Guerriero CJ, Wang H, Fang L, Kleyman TR, Welling PA, Weisz OA, Johnson JP (2007) Phosphatidylinositol 4-phosphate 5-kinase reduces cell surface expression of the epithelial sodium channel (ENaC) in cultured collecting duct cells. J Biol Chem 282:36534–36542

    Article  PubMed  CAS  Google Scholar 

  157. Widdicombe JH (2002) Regulation of the depth and composition of airway surface liquid. J Anat 201:313–318

    Article  PubMed  CAS  Google Scholar 

  158. Wiemuth D, Ke Y, Rohlfs M, McDonald FJ (2007) Epithelial sodium channel (ENaC) is multi-ubiquitinated at the cell surface. Biochem J 405:147–155

    PubMed  CAS  Google Scholar 

  159. Wine JJ, Joo NS (2004) Submucosal glands and airway defense. Proc Am Thorac Soc 1:47–53

    Article  PubMed  CAS  Google Scholar 

  160. Wu DX, Lee CY, Uyekubo SN, Choi HK, Bastacky SJ, Widdicombe JH (1998) Regulation of the depth of surface liquid in bovine trachea. Am J Physiol 274:L388–L395

    PubMed  CAS  Google Scholar 

  161. Yamamura H, Ugawa S, Ueda T, Nagao M, Shimada S (2004) Protons activate the delta-subunit of the epithelial Na+ channel in humans. J Biol Chem 279:12529–12534

    Article  PubMed  CAS  Google Scholar 

  162. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

  163. Yin S, Ding F, Dokholyan NV (2007) Modeling backbone flexibility improves protein stability estimation. Structure 15:1567–1576

    Article  PubMed  CAS  Google Scholar 

  164. Yu JX, Chao L, Chao J (1994) Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J Biol Chem 269:18843–18848

    PubMed  CAS  Google Scholar 

  165. Yue G, Malik B, Eaton DC (2002) Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J Biol Chem 277:11965–11969

    Article  PubMed  CAS  Google Scholar 

  166. Yue G, Merlin D, Selsted ME, Lencer WI, Madara JL, Eaton DC (2002) Cryptdin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells. Am J Physiol Gastrointest Liver Physiol 282:G757–G765

    PubMed  CAS  Google Scholar 

  167. Zhou Z, Treis D, Schubert SC, Harm M, Schatterny J, Hirtz S, Duerr J, Boucher RC, Mall MA (2008) Preventive but not late amiloride therapy reduces morbidity and mortality of lung disease in betaENaC-overexpressing mice. Am J Respir Crit Care Med 178:1245–1256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Funded by the CFF and by NIH P50 HL084934, P01 HL034322 and R01 HL080561.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tarran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillard, E.A., Kota, P., Gentzsch, M. et al. Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch - Eur J Physiol 460, 1–17 (2010). https://doi.org/10.1007/s00424-010-0827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0827-z

Keywords

Navigation