Skip to main content

Advertisement

Log in

Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Skeletal muscle contraction is basically controlled by Ca2+ release and its reuptake into the sarcoplasmic reticulum. However, the long-term maintenance of muscle function requires an additional Ca2+ influx from extracellular. Several mechanisms seem to contribute to the latter process, such as store-operated Ca2+ entry, stretch-activated Ca2+ influx and resting Ca2+ influx. Candidate channels that may control Ca2+ influx into muscle fibers are the STIM proteins, Orai, and the members of the transient receptor potential (TRP) family of cation channels. Here we show that TRPV4, an osmo-sensitive cation channel of the vanilloid subfamily of TRP channels is functionally expressed in mouse skeletal muscle. Western blot analysis showed the presence of TRPV4-specific bands at about 85 and 100 kDa in all tested muscles. The bands were absent when muscle proteins from TRPV4 deficient mice were analyzed. Using the manganese quench technique, we studied the resting influx of divalent cations into isolated wild-type muscle fibers. The specific TRPV4-channel activator 4α-phorbol-12,13-didecanoate (4α-PDD) stimulated resting influx by about 60% only in wild-type fibers. Electrical stimulation of soleus muscles did not reveal changes in isometric twitch contractions upon application of 4α-PDD, but tetanic contractions (at 120 Hz) were slightly increased by about 15%. When soleus muscles were stimulated with a fatigue protocol, muscle fatigue was significantly attenuated in the presence of 4α-PDD. The latter effect was not observed with muscles from TRPV4−/− mice. We conclude that TRPV4 is functionally expressed in mouse skeletal muscle and that TRPV4 activation modulates resting Ca2+ influx and muscle fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328

    Article  CAS  PubMed  Google Scholar 

  2. Alderton JM, Steinhard RA (2000) How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. Trends Cardiovasc Med 10:268–272

    Article  CAS  PubMed  Google Scholar 

  3. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  4. Berridge MJ (2006) Remodelling Ca2+ signalling systems and cardiac hypertrophy. Biochem Soc Trans 34:228–231

    Article  CAS  PubMed  Google Scholar 

  5. Boittin FX, Petermann O, Hirn C, Mittaud P, Dorchies OM, Roulet E, Rüegg UT (2006) Ca2+-independent phospholipase A2 enhances store-operated Ca2+ entry in dystrophic skeletal muscle fibers. J Cell Sci 119:3733–3742

    Article  CAS  PubMed  Google Scholar 

  6. Cairns SP, Hing WA, Slack JR, Mills RG, Loiselle DS (1998) Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle. J Appl Physiol 84:1395–1406

    CAS  PubMed  Google Scholar 

  7. De Backer F, Vandebrouck C, Gailly P, Gillis JM (2002) Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J Physiol 542:855–865

    Article  PubMed  Google Scholar 

  8. Ducret T, Vandebrouck C, Cao ML, Lebacq J, Gailly P (2006) Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. J Physiol 575:913–924

    Article  CAS  PubMed  Google Scholar 

  9. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    CAS  PubMed  Google Scholar 

  10. Fraysse B, Liantonio A, Cetrone M, Burdi R, Pierno S, Frigeri A, Pisoni M, Camerino C, De Luca A (2004) The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiol Dis 17:144–154

    Article  CAS  PubMed  Google Scholar 

  11. Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Köhler R (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE 2:e827

    Article  PubMed  Google Scholar 

  12. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161:957–967

    Article  CAS  PubMed  Google Scholar 

  13. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18:824–834

    CAS  PubMed  Google Scholar 

  14. Krüger J, Kunert-Keil C, Bisping F, Brinkmeier H (2008) Transient receptor potential cation channels in normal and dystrophic mdx muscle. Neuromuscul Disord 18:501–513

    Article  PubMed  Google Scholar 

  15. Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159

    Article  PubMed  Google Scholar 

  16. Lanner JT, Bruton JD, Assefaw-Redda Y, Andronache Z, Zhang SJ, Severa D, Zhang ZB, Melzer W, Zhang SL, Katz A, Westerblad H (2009) Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin-mediated glucose uptake in adult skeletal muscle cells. FASEB J 23:1728–1738

    Article  CAS  PubMed  Google Scholar 

  17. Liedtke W (2007) Role of TRPV ion channels in sensory transduction of osmotic stimuli in mammals. Exp Physiol 92:507–512

    Article  CAS  PubMed  Google Scholar 

  18. Liedtke W (2008) Molecular mechanisms of TRPV4-mediated neural signaling. Ann NY Acad Sci 1144:42–52

    Article  CAS  PubMed  Google Scholar 

  19. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci USA 100:13698–13703

    Article  CAS  PubMed  Google Scholar 

  20. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

  21. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  22. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    Article  CAS  PubMed  Google Scholar 

  23. Plant TD, Strotmann R (2007) Trpv4. Handb Exp Pharmacol 189–205

  24. Rolland JF, De Luca A, Burdi R, Andreetta F, Confalonieri P, Conte Camerino D (2006) Overactivity of exercise-sensitive cation channels and their impaired modulation by IGF-1 in mdx native muscle fibers: beneficial effect of pentoxifylline. Neurobiol Dis 24:466–474

    Article  CAS  PubMed  Google Scholar 

  25. Rossi AE, Dirksen RT (2006) Sarcoplasmic reticulum: the dynamic calcium governor of muscle. Muscle Nerve 33:715–731

    Article  CAS  PubMed  Google Scholar 

  26. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    Article  CAS  PubMed  Google Scholar 

  27. Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, Williams RS, Eu JP, Rosenberg P (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10:688–697

    Article  CAS  PubMed  Google Scholar 

  28. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  29. Strotmann R, Schultz G, Plant TD (2003) Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 278:26541–26549

    Article  CAS  PubMed  Google Scholar 

  30. Tutdibi O, Brinkmeier H, Rüdel R, Föhr KJ (1999) Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers. J Physiol 515:859–868

    Article  CAS  PubMed  Google Scholar 

  31. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin. FASEB J 21:608–617

    Article  CAS  PubMed  Google Scholar 

  32. Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  CAS  PubMed  Google Scholar 

  33. Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279

    Article  CAS  PubMed  Google Scholar 

  34. Vriens J, Owsianik G, Janssens A, Voets T, Nilius B (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282:12796–12803

    Article  CAS  PubMed  Google Scholar 

  35. Wissenbach U, Bodding M, Freichel M, Flockerzi V (2000) Trp12, a novel Trp related protein from kidney. FEBS Lett 485:127–134

    Article  CAS  PubMed  Google Scholar 

  36. Wolf FI (2004) TRPM7: channeling the future of cellular magnesium homeostasis? Sci STKE 2004:pe23

  37. Wu L, Gao X, Brown RC, Heller S, O’Neil RG (2007) Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293:F1699–F1713

    Article  CAS  PubMed  Google Scholar 

  38. Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562:367–380

    Article  CAS  PubMed  Google Scholar 

  39. Zanou N, Shapovalov G, Louis M, Tajeddine N, Gallo C, Van Schoor M, Anguish I, Cao ML, Schakman O, Dietrich A, Lebacq J, Ruegg U, Roulet E, Birnbaumer L, Gailly P (2010) Role of TRPC1 channel in skeletal muscle function. Am J Physiol Cell Physiol 298:C149–C162

    Article  CAS  PubMed  Google Scholar 

  40. Zhang SJ, Bruton JD, Katz A, Westerblad H (2006) Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol 572:551–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. R. Köhler for providing us TRPV4−/− mice. We are grateful to Ms. D. Schulz and Ms. H. Kenk for excellence technical assistance. This work was supported by the European Union (proposal No. 229750) and aktion benni & Co e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Brinkmeier.

Additional information

Bernd W. Pritschow and Thom Lange contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritschow, B.W., Lange, T., Kasch, J. et al. Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue. Pflugers Arch - Eur J Physiol 461, 115–122 (2011). https://doi.org/10.1007/s00424-010-0883-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0883-4

Keywords

Navigation