Skip to main content

Advertisement

Log in

Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell

  • Molecular and Genomic Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The function of alpha-cells in patients with type 2 diabetes is often disturbed; glucagon secretion is increased at hyperglycaemia, yet fails to respond to hypoglycaemia. A crucial mechanism behind the fine-tuned release of glucagon relies in the exocytotic machinery including SNARE proteins. Here, we aimed to investigate the temporal role of syntaxin 1A and SNAP-25 in mouse alpha-cell exocytosis. First, we used confocal imaging to investigate glucose dependency in the localisation of SNAP-25 and syntaxin 1A. SNAP-25 was mainly distributed in the plasma membrane at 2.8 mM glucose, whereas the syntaxin 1A distribution in the plasma membrane, as compared to the cytosolic fraction, was highest at 8.3 mM glucose. Furthermore, following inclusion of an antibody against SNAP-25 or syntaxin 1A, exocytosis evoked by a train of ten depolarisations and measured as an increase in membrane capacitance was reduced by ~50%. Closer inspection revealed a reduction in the refilling of granules from the reserve pool (RP), but also showed a decreased size of the readily releasable pool (RRP) by ~45%. Disparate from the situation in pancreatic beta-cells, the voltage-dependent Ca2+ current was not reduced, but the Ca2+ sensitivity of exocytosis decreased by the antibody against syntaxin 1A. Finally, ultrastructural analysis revealed that the number of docked granules was >2-fold higher at 16.7 mM than at 1 mM glucose. We conclude that syntaxin 1A and SNAP-25 are necessary for alpha-cell exocytosis and regulate fusion of granules belonging to both the RRP and RP without affecting the Ca2+ current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barg S, Eliasson L, Renstrom E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells. Diabetes 51(Suppl 1):S74–S82

    Article  PubMed  CAS  Google Scholar 

  2. Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49(9):1500–1510

    Article  PubMed  CAS  Google Scholar 

  3. Barg S, Knowles MK, Chen X, Midorikawa M, Almers W (2011) Syntaxin clusters assemble reversibly at sites of secretory granules in live cells. Proc Natl Acad Sci USA 107(48):20804–20809

    Article  Google Scholar 

  4. Barg S, Renstrom E, Berggren PO, Bertorello A, Bokvist K, Braun M, Eliasson L, Holmes WE, Kohler M, Rorsman P, Thevenod F (1999) The stimulatory action of tolbutamide on Ca2+-dependent exocytosis in pancreatic beta cells is mediated by a 65-kDa mdr-like P-glycoprotein. Proc Natl Acad Sci USA 96(10):5539–5544

    Article  PubMed  CAS  Google Scholar 

  5. Cryer PE (2004) Diverse causes of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med 350(22):2272–2279

    Article  PubMed  CAS  Google Scholar 

  6. De Marinis YZ, Salehi A, Ward CE, Zhang Q, Abdulkader F, Bengtsson M, Braha O, Braun M, Ramracheya R, Amisten S, Habib AM, Moritoh Y, Zhang E, Reimann F, Rosengren AH, Shibasaki T, Gribble F, Renstrom E, Seino S, Eliasson L, Rorsman P (2010) GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab 11(6):543–553

    Article  PubMed  Google Scholar 

  7. De Marinis YZ, Zhang E, Amisten S, Taneera J, Renstrom E, Rorsman P, Eliasson L (2010) Enhancement of glucagon secretion in mouse and human pancreatic alpha cells by protein kinase C (PKC) involves intracellular trafficking of PKCalpha and PKCdelta. Diabetologia 53(4):717–729

    Article  PubMed  CAS  Google Scholar 

  8. Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC (1998) The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J Biol Chem 273(51):33905–33908

    Article  PubMed  CAS  Google Scholar 

  9. Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P (2008) Novel aspects of the molecular mechanisms controlling insulin secretion. J Physiol 586(14):3313–3324

    Article  PubMed  CAS  Google Scholar 

  10. Fujita Y, Sasaki T, Fukui K, Kotani H, Kimura T, Hata Y, Sudhof TC, Scheller RH, Takai Y (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 271(13):7265–7268

    Article  PubMed  CAS  Google Scholar 

  11. Gerber SH, Sudhof TC (2002) Molecular determinants of regulated exocytosis. Diabetes 51(Suppl 1):S3–S11

    Article  PubMed  CAS  Google Scholar 

  12. Gopel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000) Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 528(Pt 3):509–520

    Article  PubMed  CAS  Google Scholar 

  13. Gopel S, Zhang Q, Eliasson L, Ma XS, Galvanovskis J, Kanno T, Salehi A, Rorsman P (2004) Capacitance measurements of exocytosis in mouse pancreatic alpha-, beta- and delta-cells within intact islets of Langerhans. J Physiol 556(Pt 3):711–726

    Article  PubMed  Google Scholar 

  14. Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renstrom E, Rorsman P (1997) Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 110(3):217–228

    Article  PubMed  CAS  Google Scholar 

  15. Gustavsson N, Wei SH, Hoang DN, Lao Y, Zhang Q, Radda GK, Rorsman P, Sudhof TC, Han W (2009) Synaptotagmin-7 is a principal Ca2+ sensor for Ca2+-induced glucagon exocytosis in pancreas. J Physiol 587(Pt 6):1169–1178

    Article  PubMed  CAS  Google Scholar 

  16. Hou JC, Min L, Pessin JE (2009) Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm 80:473–506

    Article  PubMed  CAS  Google Scholar 

  17. Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB (2003) Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol 5(4):330–335

    Article  PubMed  CAS  Google Scholar 

  18. Jeans AF, Oliver PL, Johnson R, Capogna M, Vikman J, Molnar Z, Babbs A, Partridge CJ, Salehi A, Bengtsson M, Eliasson L, Rorsman P, Davies KE (2007) A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proc Natl Acad Sci USA 104(7):2431–2436

    Article  PubMed  CAS  Google Scholar 

  19. Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E (2005) CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 115(1):146–154

    PubMed  CAS  Google Scholar 

  20. Lam PP, Leung YM, Sheu L, Ellis J, Tsushima RG, Osborne LR, Gaisano HY (2005) Transgenic mouse overexpressing syntaxin-1A as a diabetes model. Diabetes 54(9):2744–2754

    Article  PubMed  CAS  Google Scholar 

  21. Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Sudhof TC (1995) Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375(6532):594–599

    Article  PubMed  CAS  Google Scholar 

  22. Macdonald PE, Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, Cox R, Eliasson L, Rorsman P (2007) A KATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 5(6):e143

    Article  PubMed  Google Scholar 

  23. Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20(3):389–399

    Article  PubMed  CAS  Google Scholar 

  24. Olofsson CS, Gopel SO, Barg S, Galvanovskis J, Ma X, Salehi A, Rorsman P, Eliasson L (2002) Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Archiv 444(1–2):43–51

    PubMed  CAS  Google Scholar 

  25. Olsen HL, Hoy M, Zhang W, Bertorello AM, Bokvist K, Capito K, Efanov AM, Meister B, Thams P, Yang SN, Rorsman P, Berggren PO, Gromada J (2003) Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells. Proc Natl Acad Sci USA 100(9):5187–5192

    Article  PubMed  CAS  Google Scholar 

  26. Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB, Gromada J (2005) Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells. Endocrinology 146(11):4861–4870

    Article  PubMed  CAS  Google Scholar 

  27. Pinheiro JC, Bates DM (2009) Mixed-effects models in S and S-PLUS. Springer Verlag

  28. Quesada I, Tuduri E, Ripoll C, Nadal A (2008) Physiology of the pancreatic alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol 199(1):5–19

    Article  PubMed  CAS  Google Scholar 

  29. Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77

    PubMed  CAS  Google Scholar 

  30. Rorsman P, Salehi SA, Abdulkader F, Braun M, Macdonald PE (2008) K(ATP)-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 19(8):277–284

    Article  PubMed  CAS  Google Scholar 

  31. Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABA(B) receptor activation at a glutamatergic synapse. Nature 424(6950):775–778

    Article  PubMed  CAS  Google Scholar 

  32. Salaun C, James DJ, Greaves J, Chamberlain LH (2004) Plasma membrane targeting of exocytic SNARE proteins. Biochim Biophys Acta 1693(2):81–89

    Article  PubMed  Google Scholar 

  33. Salehi A, Vieira E, Gylfe E (2006) Paradoxical stimulation of glucagon secretion by high glucose concentrations. Diabetes 55(8):2318–2323

    Article  PubMed  CAS  Google Scholar 

  34. Sorensen JB, Matti U, Wei SH, Nehring RB, Voets T, Ashery U, Binz T, Neher E, Rettig J (2002) The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc Natl Acad Sci USA 99(3):1627–1632

    Article  PubMed  CAS  Google Scholar 

  35. Vikman J, Jimenez-Feltstrom J, Nyman P, Thelin J, Eliasson L (2009) Insulin secretion is highly sensitive to desorption of plasma membrane cholesterol. FASEB J 23(1):58–67

    Article  PubMed  CAS  Google Scholar 

  36. Vikman J, Ma X, Hockerman GH, Rorsman P, Eliasson L (2006) Antibody inhibition of synaptosomal protein of 25 kDa (SNAP-25) and syntaxin 1 reduces rapid exocytosis in insulin-secreting cells. J Mol Endocrinol 36(3):503–515

    Article  PubMed  CAS  Google Scholar 

  37. Wiser O, Trus M, Hernandez A, Renstrom E, Barg S, Rorsman P, Atlas D (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci USA 96(1):248–253

    Article  PubMed  CAS  Google Scholar 

  38. Xia F, Leung YM, Gaisano G, Gao X, Chen Y, Fox JE, Bhattacharjee A, Wheeler MB, Gaisano HY, Tsushima RG (2007) Targeting of voltage-gated K+and Ca2+ channels and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins to cholesterol-rich lipid rafts in pancreatic alpha-cells: effects on glucagon stimulus-secretion coupling. Endocrinology 148(5):2157–2167

    Article  PubMed  CAS  Google Scholar 

  39. Xu T, Rammner B, Margittai M, Artalejo AR, Neher E, Jahn R (1999) Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99(7):713–722

    Article  PubMed  CAS  Google Scholar 

  40. Yang SN, Larsson O, Branstrom R, Bertorello AM, Leibiger B, Leibiger IB, Moede T, Kohler M, Meister B, Berggren PO (1999) Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca(2+) channels in pancreatic beta cells. Proc Natl Acad Sci USA 96(18):10164–10169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Britt-Marie Nilsson, Anna-Maria V Ramsay and Kristina Borglid for technical assistance. This work was supported by the Swedish Research Council, The Novo Nordisk Foundation, The Swedish Diabetes Association, Knut and Alice Wallenberg Foundation, The Albert Påhlsson Foundation, UMAS Foundation and the EU through a Marie Curie Intra-European Fellowship (MGP). LE is a senior researcher at the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Eliasson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 17.1 kb)

ESM 2

(DOC 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, S.A., Pedersen, M.G., Vikman, J. et al. Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell. Pflugers Arch - Eur J Physiol 462, 443–454 (2011). https://doi.org/10.1007/s00424-011-0979-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0979-5

Keywords

Navigation