Skip to main content

Advertisement

Log in

Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Plasma sodium, slightly above normal and in presence of aldosterone, stiffens vascular endothelium and reduces nitric oxide release with the consequence of endothelial dysfunction. This process is mediated by epithelial sodium channels (ENaC) and, most likely, the endothelial Na+/K+-ATPase. Both, ENaC and Na+/K+-ATPase, are located in the plasma membrane of endothelial cells and embedded in the endothelial glycocalyx (eGC). This negatively charged biopolymer is directly exposed to the blood stream and selectively buffers sodium ions. We hypothesize that the glycocalyx could interfere with endothelial sodium transport when extracellular sodium varies in the physiological range. Therefore, we modeled the endothelial cell as a pump–leak system measuring changes of intracellular sodium in cultured human endothelial cells. Experiments were performed under low/high extracellular sodium conditions before and after enzymatic eGC removal, and with inhibition of Na+/K+-ATPase and ENaC, respectively. Three major observations were made: (1) eGC removal by heparinase treatment facilitates sodium to enter/exit the endothelial cells. (2) The direction of net sodium movement across the endothelial plasma membrane depends on the concentration of extracellular sodium which regulates both the Na+/K+-ATPase and ENaC activity. (3) Removal of eGC and inhibition of sodium transport modify the electrical resistance of endothelial cells. We conclude that the eGC serves as a potential “firewall” preventing uncontrolled access of sodium to the pump–leak system of the endothelial cell. After eGC removal, sodium access to the system is facilitated. Thus the pump–leak system could be regulated by ambient sodium and control vascular permeability in pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) Hmec-1—establishment of an immortalized human microvascular endothelial-cell line. J Invest Dermatol 99:683–690

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594

    Article  PubMed  CAS  Google Scholar 

  3. Bauer V, Sotnikova R (2010) Nitric oxide—the endothelium-derived relaxing factor and its role in endothelial functions. Gen Physiol Biophys 29:319–340

    Article  PubMed  CAS  Google Scholar 

  4. Beck FX, Neuhofer W, Dorge A, Giebisch G, Wang T (2003) Intracellular Na concentration and Rb uptake in proximal convoluted tubule cells and abundance of Na/K-ATPase alpha 1-subunit in NHE3 (−/−) mice. Pflugers Arch 446:100–105

    PubMed  CAS  Google Scholar 

  5. Birkedal R, Shiels HA (2007) High [Na+](i) in cardiomyocytes from rainbow trout. Am J Physiol Regul Integr Comp Physiol 293:R861–R866

    Article  PubMed  CAS  Google Scholar 

  6. Blaustein MP, Zhang J, Chen L, Song H, Raina H, Kinsey SP, Izuka M, Iwamoto T, Kotlikoff MI, Lingrel JB, Philipson KD, Wier W, Hamlyn JM (2009) The pump, the exchanger, and endogenous ouabain signaling mechanisms that link salt retention to hypertension. Hypertension 53:291–298

    Article  PubMed  CAS  Google Scholar 

  7. Borzak S, Reers M, Arruda J, Sharma VK, Sheu SS, Smith TW, Marsh JD (1992) Na+ efflux mechanisms in ventricular myocytes—measurement of [Na+]I with Na+-binding benzofuran isophthalate. Am J Physiol 263:H866–H874

    PubMed  CAS  Google Scholar 

  8. Chappell D, Jacob M, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, Becker BF (2008) Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx. Biol Chem 389:79–82

    Article  PubMed  CAS  Google Scholar 

  9. Cutaia M, Davis R, Parks N, Rounds S (1996) Effect of ATP-induced permeabilization on loading of the Na+ probe SBFI into endothelial cells. J Appl Physiol 81:509–515

    PubMed  CAS  Google Scholar 

  10. Diakov A, Bera K, Mokrushina M, Krueger B, Korbmacher C (2008) Cleavage in the gamma-subunit of the epithelial sodium channel (ENaC) plays an important role in the proteolytic activation of near-silent channels. J Physiol 586:4587–4608

    Article  PubMed  CAS  Google Scholar 

  11. Frelin C, Barbry P, Vigne P, Chassande O, Cragoe EJ, Lazdunski M (1988) Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca-2+ exchanger. Biochimie 70:1285–1290

    Article  PubMed  CAS  Google Scholar 

  12. Gouverneur M, Van den Berg B, Nieuwdorp M, Stroes E, Vink H (2006) Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med 259:393–400

    Article  PubMed  CAS  Google Scholar 

  13. Haddy FJ, Pamnani MB, Swindall BT, Johnston J, Cragoe EJ (1985) Sodium-channel blockers are vasodilator as well as natriuretic and diuretic agents. Hypertension 7:I121–I126

    PubMed  CAS  Google Scholar 

  14. He FJ, MacGregor GA (2010) Reducing population salt intake worldwide: from evidence to implementation. Prog Cardiovasc Dis 52:363–382

    Article  PubMed  CAS  Google Scholar 

  15. He FJ, Markandu ND, Sagnella GA, de Wardener HE, MacGregor GA (2005) Plasma sodium—ignored and underestimated. Hypertension 45:98–102

    Article  PubMed  CAS  Google Scholar 

  16. Henrion D, Laher I, Klaasen A, Bevan JA (1994) Myogenic tone of rabbit facial vein and posterior cerebral-artery is influenced by changes in extracellular sodium. Am J Physiol 266:H377–H383

    PubMed  CAS  Google Scholar 

  17. Herzig S, Mohr K (1985) Sodium load and high-affinity ouabain binding in rat and guinea-pig cardiac tissue. Br J Pharmacol 84:685–688

    PubMed  CAS  Google Scholar 

  18. Horisberger JD, Chraibi A (2004) Epithelial sodium channel: a ligand-gated channel? Nephron Physiol 96:37–41

    Article  Google Scholar 

  19. Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR (2003) Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha- and gamma-subunits. J Biol Chem 278:37073–37082

    Article  PubMed  CAS  Google Scholar 

  20. Ismailov I II, Berdiev BK, Bradford AL, Awayda MS, Fuller CM, Benos DJ (1996) Associated proteins and renal epithelial Na+ channel function. J Membr Biol 149:123–132

    Article  PubMed  CAS  Google Scholar 

  21. Kleyman T, Myerburg M, Hughey R (2006) Regulation of ENaCs by proteases: an increasingly complex story. Kidney Int 70:1391–1392

    Article  PubMed  CAS  Google Scholar 

  22. Kusche-Vihrog K, Callies C, Fels J, Oberleithner H (2010) The epithelial sodium channel (ENaC): mediator of the aldosterone response in the vascular endothelium? Steroids 75:544–549

    Article  PubMed  CAS  Google Scholar 

  23. Kusche-Vihrog K, Sobczak K, Bangel N, Wilhelmi M, Nechyporuk-Zloy V, Schwab A, Schillers H, Oberleithner H (2008) Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch 455:849–857

    Article  PubMed  CAS  Google Scholar 

  24. Lehoux S, Plante GE (1996) Antihypertensive drugs and endothelial cell function. Prostaglandins Leukot Essent Fatty Acids 54:65–70

    Article  PubMed  CAS  Google Scholar 

  25. Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458:111–135

    Article  PubMed  CAS  Google Scholar 

  26. Maier LS, Pieske B, Allen DG (1997) Influence of stimulation frequency on [Na+](i) and contractile function in Langendorff-perfused rat heart. Am J Physiol 273:H1246–H1254

    PubMed  CAS  Google Scholar 

  27. McEneaney V, Harvey BJ, Thomas W (2008) Aldosterone regulates rapid trafficking of epithelial sodium channel subunits in renal cortical collecting duct cells via protein kinase D activation. Mol Endocrinol 22:881–892

    Article  PubMed  CAS  Google Scholar 

  28. Morita K, Azuma M, Hamano S, Oka M, Teraoka K (1992) Inhibition by amiloride of ouabain-evoked catecholamine secretion from cultured adrenal chromaffin cells—evidence for its blocking action on interaction between ouabain and Na+/K + -pump. J Pharmacol Exp Ther 262:1209–1213

    PubMed  CAS  Google Scholar 

  29. Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, Oberleithner K (2011) Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch 462:519–528

    Article  PubMed  CAS  Google Scholar 

  30. Oberleithner H, Riethmuller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 104:16281–16286

    Article  PubMed  CAS  Google Scholar 

  31. Perez FR, Venegas F, Gonzalez M, Andres S, Vallejos C, Riquelme G, Sierralta J, Michea L (2009) Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries. Hypertension 53:1000–1007

    Article  PubMed  CAS  Google Scholar 

  32. Pickkers P, van Beek M, Hughes AD, Russel FGM, Thien T, Smits P (1999) Presence and mechanism of direct vascular effects of amiloride in humans. J Cardiovasc Pharmacol 34:388–393

    Article  PubMed  CAS  Google Scholar 

  33. Pierdomenico SD, Bucci A, Manunta P, Rivera R, Ferrandi M, Hamlyn JM, Lapenna D, Cuccurullo F, Mezzetti A (2001) Endogenous ouabain and hemodynamic and left ventricular geometric patterns in essential hypertension. Am J Hypertens 14:44–50

    Article  PubMed  CAS  Google Scholar 

  34. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666

    Article  PubMed  CAS  Google Scholar 

  35. Safar ME, Thuilliez C, Richard V, Benetos A (2000) Pressure-independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc Res 46:269–276

    Article  PubMed  CAS  Google Scholar 

  36. Schild L (2010) The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta 1802:1159–1165

    PubMed  CAS  Google Scholar 

  37. Serban DN, Nilius B, Vanhoutte PM (2010) The endothelial saga: the past, the present, the future. Pflugers Arch 459:787–792

    Article  PubMed  CAS  Google Scholar 

  38. Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E (1996) Anionic biopolymers as blood flow sensors. Biosens Bioelectron 11:281–294

    Article  PubMed  CAS  Google Scholar 

  39. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O (2009) Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20:299–310

    Article  PubMed  CAS  Google Scholar 

  40. Teiwes J, Toto RD (2007) Epithelial sodium channel inhibition in cardiovascular disease—a potential role for amiloride. Am J Hypertens 20:109–117

    Article  PubMed  CAS  Google Scholar 

  41. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  PubMed  CAS  Google Scholar 

  42. Weiser N, Molenda N, Urbanova K, Baehler M, Pieper U, Oberleithner H, Schillers H (2011) Paracellular permeability of bronchial epithelium is controlled by CFTR. Cell Physiol Biochem 28:289–296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG, OB 63/17-1 and Koselleck-OB 63/18), the University of Münster (thesis scholarship to S.K.), and the Innovative Medizinische Forschung (IMF), KO 620904. The authors would like to thank COST Action TD1002 for supporting their networking activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Kusche-Vihrog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korte, S., Wiesinger, A., Straeter, A.S. et al. Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pflugers Arch - Eur J Physiol 463, 269–278 (2012). https://doi.org/10.1007/s00424-011-1038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1038-y

Keywords

Navigation