Skip to main content
Log in

Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Approximately 5,000 plaques derived from a Brassica napus L. (canola) seed-cDNA library representing 15 days after pollination (DAP) were differentially screened for highly expressed genes at the early stages of seed development. Analysis of 104 differentially expressed sequence tags revealed 54 unique genes, of which 33 had putative homologues described in Arabidopsis thaliana (L.) Heynh. or B. napus. These encoded diverse proteins, ranging from proteins of unknown function to metabolic enzymes and proteins associated with cell structure and development. Twenty-five genes were only expressed in seeds, and 11 of these started to express as early as 5 or 10 DAP. The majority of the seed-specific genes that are expressed at early stages of seed development encoded proteins with high similarity to hypothetical Arabidopsis proteins. Tissue-specificity determined by Northern analysis revealed that four seed-specific genes were expressed only in seed coats and another five in both embryos and seed coats. Analysis of transcript profiles of seed-abundant as well as seed-specific genes, and their expression patterns, implies that the B. napus seed is undergoing an active cell proliferation during 10–20 DAP, while establishing metabolic networks for subsequent seed maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAP:

days after pollination

EST:

expressed sequence tag

LEA proteins:

late-embryogenesis-abundant proteins

VPE:

vacuolar processing enzyme

References

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    CAS  PubMed  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    CAS  PubMed  Google Scholar 

  • Connelly C, Hieter P (1996) Budding yeast SKP1 encoding an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86:275–285

    CAS  PubMed  Google Scholar 

  • Dong JZ, Dunstan DI (1996) A reliable method for extraction of RNA from various conifer tissues. Plant Cell Rep 15:516–521

    Article  CAS  Google Scholar 

  • Dure L (1993) The lea proteins of higher plants. In: Verma DPS (ed) Controls of plant gene expression. CRC Press, Boca Raton, pp 325–335

  • Ewing RM, Kahka AB, Poirot O, Lopez F, Audic S, Claverie JM (1999) Large-scale statistical analysis of rice ESTs reveal correlated patterns of gene expression. Genome Res 9:950–959

    CAS  PubMed  Google Scholar 

  • Fowler DB, Downey RK (1970) Lipid and morphological changes in developing rapeseed, Brassica napus. Can J Plant Sci 50:233–247

    CAS  Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    CAS  PubMed  Google Scholar 

  • Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160

    CAS  PubMed  Google Scholar 

  • Gruis DF, Selinger DA, Curran JM, Jung R (2002) Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 14:2863–2882

    Article  CAS  PubMed  Google Scholar 

  • Hemerly AS, Ferreira PCG, Van Montagu M, Engler G, Inze D (2000) Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of Arabidopsis. Plant J 23:123–130

    Article  CAS  PubMed  Google Scholar 

  • Hill LM, Rawsthorne S (2000) Carbon supply for storage-product synthesis in developing seeds of oilseed rape. Biochem Soc Trans 28:667–669

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Aida M, Takada S, Tasaka M (2000) Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol 41:60–67

    CAS  PubMed  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed  Google Scholar 

  • King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114:153–160

    CAS  PubMed  Google Scholar 

  • LaFayette PR, Eriksson KE, Dean JD (1995) Nucleotide sequence of a cDNA clone encoding an acidic laccase from sycamore maple (Acer pseudoplatanus L.). Plant Physiol 107:667–668

    Article  CAS  PubMed  Google Scholar 

  • Lim CO, Kim HY, Kim MG, Lee SI, Chung WS, Park SH, Hwang I, Cho MJ (1996) Expressed sequence tags of Chinese cabbage flower bud cDNA. Plant Physiol 111:577–588

    Article  CAS  PubMed  Google Scholar 

  • Lohaus G, Moellers C (2000) Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content. Planta 211:833–840

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642

    Article  CAS  PubMed  Google Scholar 

  • Narasimhulu SB, Reddy ASN (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell 10:957–965

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479

    Article  CAS  PubMed  Google Scholar 

  • Park YS, Kwak JM, Kwon OY, Kim YS, Lee DS, Cho MJ, Lee HH, Nam HG (1993) Generation of expressed sequence tags of random root cDNA clones of Brassica napus by single-run partial sequencing. Plant Physiol 103:359–370

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791

    Article  CAS  PubMed  Google Scholar 

  • Porat R, Lu P, O’Neill SD (1998) Arabidopsis SKP1, a homologue of cell regulator gene, is predominantly expressed in meristematic cells. Planta 204:345–351

    CAS  PubMed  Google Scholar 

  • Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fischer RL (1995) The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742

    PubMed  Google Scholar 

  • Richards KL, Anders KR, Nogales E, Schwartz K, Downing KH, Botstein D (2000) Structure-function relationships in yeast tubulins. Mol Biol Cell 11:1887–1903

    CAS  PubMed  Google Scholar 

  • Sung ZR, Chen L, Moon YH, Lertpiriyapong K (2003) Mechanisms of floral repression in Arabidopsis. Curr Opin Plant Biol 6:29–35

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, Machida Y (2001) A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128:4681–4689

    CAS  PubMed  Google Scholar 

  • Thomas TL (1993) Gene expression during plant embryogenesis and germination. Plant Cell 5:1401–1410

    CAS  PubMed  Google Scholar 

  • Tyers M, Jorgensen P (2000) Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev 10:54–64

    Article  CAS  PubMed  Google Scholar 

  • Uribe X, Torres MA, Capellades M, Puigdomènech P, Rigau J (1998) Maize α-tubulin genes are expressed according to specific patterns of cell differentiation. Plant Mol Biol 37:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Vernon DM, Hannon MJ, Le M, Forsthoefel NR (2001) An expanded role for the TWN1 gene in embryogenesis: defects in cotyledon pattern and morphology in the twn1 mutant of Arabidopsis (Brassicaceae). Am J Bot 88:570–582

    CAS  PubMed  Google Scholar 

  • Vroemen CW, Langeveld S, Mayer U, Ripper G, Jürgens G, Kammen AV, de Vries SC (1996) Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 8:783–791

    Article  CAS  PubMed  Google Scholar 

  • Wan L, Xia Q, Qiu X, Selvaraj G (2002) Early stages of seed development in Brassica napus: a seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument. Plant J 30:1–10

    Article  CAS  PubMed  Google Scholar 

  • Western TL, Haughn GW (1999) BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. Plant J 18:329–336

    Article  CAS  PubMed  Google Scholar 

  • White JA, Todd J, Newman T, Focks N, Girke T, de Ilárduya OM, Jaworski JG, Ohlrogge JB, Benning C (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124:1582–1594

    PubMed  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Katz A, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–2381

    Google Scholar 

  • Yang M, Hu Y, Lodhi M, McCombie WR, Ma H (1999) The Arabidopsis SKP1-LIKE gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA 96:11416–11421

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the DNA Technologies Unit for sequencing services. This is NRCC Publication No. 45266

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawzy Georges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, J., Keller, W.A., Yan, W. et al. Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218, 483–491 (2004). https://doi.org/10.1007/s00425-003-1124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1124-2

Keywords

Navigation