Skip to main content
Log in

The plant nuclear envelope

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

This review summarizes our present knowledge about the composition and function of the plant nuclear envelope. Compared with animals or yeast, our molecular understanding of the nuclear envelope in higher plants is in its infancy. However, fundamental differences in the structure and function of the plant and animal nuclear envelope have already been found. Here, we compare and contrast these differences with respect to nuclear pore complexes, targeting of Ran signaling to the nuclear envelope, inner nuclear envelope proteins, and the role and fate of the nuclear envelope during mitosis. Further investigation of the emerging fundamental differences as well as the similarities between kingdoms might illuminate why there appears to be more than one blueprint for building a nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2

Similar content being viewed by others

Abbreviations

GFP :

Green fluorescent protein

INE :

Inner nuclear envelope

LAP :

Lamina-associated polypeptide

LBR :

Lamin B receptor

MTOC :

Microtubule-organizing center

NE :

Nuclear envelope

NPC :

Nuclear pore complex

ONE :

Outer nuclear envelope

RanBP :

Ran-binding protein

RanGAP :

Ran GTPase-activating protein

WPP domain :

Tryptophan–proline–proline domain

References

  • Ach RA, Gruissem W (1994) A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci USA 91:5863–5867

    CAS  PubMed  Google Scholar 

  • Allen NP, Huang L, Burlingame A, Rexach M (2001) Proteomic analysis of nucleoporin interacting proteins. J Mol Biol 276:29268–29274

    Article  CAS  Google Scholar 

  • Altschul, SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 17:3389–3402

    Article  Google Scholar 

  • Armstrong SJ, Franklin CH, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    CAS  PubMed  Google Scholar 

  • Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S (1998) Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol 143:1801–1812

    PubMed  Google Scholar 

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the Initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18

    Article  CAS  PubMed  Google Scholar 

  • Bass HW, Bordoli SJ, Foss, EM (2003) The desynaptic (dy) and desynaptic 1 (dsy1) mutations in maize (Zea mays L.) cause distinct telomere-misplacement phenotypes during meiotic prophase. J Exp Bot 54:39–46

    Article  CAS  PubMed  Google Scholar 

  • Bunney TD, Shaw PJ, Watkins PAC, Taylor JP, Beven AF, Wells B, Calder GM, Drøbak BK (2000) ATP-dependent regulation of nuclear Ca2+ levels in plant cells. FEBS Lett 476:145–149

    Article  CAS  PubMed  Google Scholar 

  • Canaday J, Stoppin-Mellet V, Mutterer J, Lambert AM, Schmit A-C (2000) Higher plant cells: gamma-tubulin and microtubule nucleation in the absence of centrosomes. Microsc Res Tech 49:487–495

    Article  CAS  PubMed  Google Scholar 

  • Cohen M, Wilson KL, Gruenbaum Y (2001) Membrane proteins of the nuclear pore complex: Gp210 is conserved in Drosophila, C. elegans, and A. thaliana. Gene Ther Mol Biol 6:47–55

    Google Scholar 

  • Collings DA, Carter CN, Rink JC, Scott AC, Sarah E, Wyatt SE, Strömgren Allen N (2000) Plant nuclei can contain extensive grooves and invaginations. Plant Cell 12:2425–2440

    CAS  PubMed  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392:828–831

    Article  CAS  PubMed  Google Scholar 

  • Cordes VC, Reidenbach S, Rackwitz H-R, Franke WW (1997) Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Cell Biol 136:515–529

    CAS  PubMed  Google Scholar 

  • Cordes VC, Hase ME, Müller L (1998) Molecular segments of protein Tpr that confer nuclear targeting and association with the nuclear pore complex. Exp Cell Res 245:43–56

    PubMed  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125:532–538

    Article  CAS  PubMed  Google Scholar 

  • Criqui MC, Genschik P (2002) Mitosis in plants: how far we have come at the molecular level? Curr Opin Plant Biol 5:487–493

    Article  CAS  PubMed  Google Scholar 

  • Criqui MC, Weingartner M, Capron A, Parmentier Y, Shen WH, Heberle-Bors E, Bogre L, Genschik P (2001) Sub-cellular localization of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. Plant J 28:569–581

    Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    Article  CAS  PubMed  Google Scholar 

  • Dasso M (2002) The Ran GTPase: theme and variations. Curr Biol 12:502–508

    Article  Google Scholar 

  • Dixit R, Cyr RJ (2002) Spatio-temporal relationship between nuclear-envelope breakdown and preprophase band disappearance in cultured tobacco cells. Protoplasma 219:116–21

    Article  CAS  PubMed  Google Scholar 

  • Downie L, Priddle J, Hawes C, Evans DE (1998) A calcium pump at the higher plant nuclear envelope? FEBS Lett 429:44–48

    Article  CAS  PubMed  Google Scholar 

  • Echevarria W, Leite MF, Mateus TG, Zipfel WR, Nathanson MH (2003) Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5:440–446

    Article  CAS  PubMed  Google Scholar 

  • Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 138:1193–1206

    PubMed  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel P-M (1998) Subcellular distribution of proteasomes implicated a major location of protein degradation in the nuclear envelope–ER network in yeast. EMBO J 17:6144–6154

    Article  CAS  PubMed  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel P-M (1999) GFP-labeling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol Biol Rep 26:131–135

    Article  CAS  PubMed  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canady J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert A-M, Schmit A-C (2002) The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    CAS  PubMed  Google Scholar 

  • Fava F, Raynaud-Messina B, Leung-Tack J, Mazzolini L, Li M, Guillemot JC, Cachot D, Tollon Y, Ferrara P, Wright M (1999) Human 76p: a new member of the γ-tubulin-associated protein family. J Cell Biol 147:857–868

    Article  CAS  PubMed  Google Scholar 

  • Fontoura BM, Dales S, Blobel G, Zhong H (2001) The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc Natl Acad Sci USA 98:3208–3213

    CAS  PubMed  Google Scholar 

  • Franco S, Alsheimer M, Herrera E, Benavente R, Blasco MA (2002) Mammalian meiotic telomeres: composition and ultrastructure in telomerase-deficient mice. Eur J Cell Biol 81:335–340

    PubMed  Google Scholar 

  • Fricker M, Hollinshead M, White N, Vaux D (1997) Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 136:531–44

    Article  CAS  PubMed  Google Scholar 

  • Frosst P, Guan T, Subauste C, Hahn K, Gerace L (2002) Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 156:617–630

    PubMed  Google Scholar 

  • Gindullis F, Peffer NJ, Meier I (1999) MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope. Plant Cell 11:1755–1767

    Google Scholar 

  • Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM (2000) Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16:533–547

    Article  CAS  PubMed  Google Scholar 

  • Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 162:1979–1993

    CAS  PubMed  Google Scholar 

  • Green DM, Johnson CP, Hagan H, Corbett A (2003) The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc Natl Acad Sci USA 100:1010–1015

    Article  CAS  PubMed  Google Scholar 

  • Grygorczyk C, Grygorczyk R (1998) A Ca2+- and voltage-dependant cation channel in the nuclear envelope of red beet. Biochim Biophys Acta 1375:117–130

    Article  CAS  PubMed  Google Scholar 

  • Haizel T, Merkle T, Pay A, Fejes E, Nagy F (1997) Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant J 11:93–103

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Chawla S, Johnson CM, Bading H (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265

    CAS  PubMed  Google Scholar 

  • Hase ME, Cordes VC (2003) Direct interaction with Nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol Biol Cell 14:1923–1940

    Article  CAS  PubMed  Google Scholar 

  • Heath B (1980) Variant mitoses in lower eukaryotes: Indicators of the evolution of mitosis? Int Rev Cytol 64:1–80

    Google Scholar 

  • Hediger F, Dubrana K, Gasser SM (2002a) Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J Struct Biol 140:79–91

    Article  CAS  PubMed  Google Scholar 

  • Hediger F, Neumann FR, van Houwe G, Dubrana K, Gasser SM (2002b) Live imaging of telomere-anchoring pathways in yeast. Curr Biol 12:2076–2089

    Article  CAS  PubMed  Google Scholar 

  • Heese-Peck A, Cole RN, Borkhsenious ON, Hart GW, Raikhel NV (1995) Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine. Plant Cell 7:1459–1471

    Google Scholar 

  • Heese-Peck A, Raikhel N (1998) A glycoprotein modified with terminal N-acetylglucosamine and localized at the nuclear rim shows sequence similarity to aldose-1-epimerases. Plant Cell 10:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA (2002) The three-dimensional structure of the autoproteolytic, nuclear-pore-targeting domain of the human nucleoporin Nup98. Mol Cell 10:347–358

    CAS  PubMed  Google Scholar 

  • Holaska JM, Wilson KL, Mansharamani M (2002) The nuclear envelope, lamins and nuclear assembly. Curr Opin Cell Biol 14:357–364

    Article  CAS  PubMed  Google Scholar 

  • Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell Biol 111:309–321

    CAS  PubMed  Google Scholar 

  • Irons SL, Evans DE, Brandizzi F (2003) The first 238 amino acids of the human lamin B receptor are targeted to the nuclear envelope in plants. J Exp Bot 54:943–950

    Article  CAS  PubMed  Google Scholar 

  • Job D, Valiron O, Oakley B (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    CAS  PubMed  Google Scholar 

  • Joseph J, Tan SH, Karpova TS, McNally JG, Dasso M (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol 156:595–602

    Article  CAS  PubMed  Google Scholar 

  • Knop M, Schiebel E (1997) Spc98p and Spc97c of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 23:6985–6995

    Article  Google Scholar 

  • Knop M, Schiebel E (1998) Receptors determine the cellular localization of a γ-tubulin complex and thereby the site of microtubule formation. EMBO J 17:3952–3997

    Article  CAS  PubMed  Google Scholar 

  • Kosova B, Panté N, Rollenhagen C, Podtelejnikov A, Mann M, Aebi U, Hurt E (2000) Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with Nic96p. J Biol Chem 275:343–350

    PubMed  Google Scholar 

  • Lee SS, Cho HS, Yoon GM, Ahn J-W, Kim H-H, Pai H-S (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J. 33:825–840

    Google Scholar 

  • Li H, Roux SJ (1992) Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei. Proc Natl Acad Sci USA 89:8434–8438

    CAS  PubMed  Google Scholar 

  • Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220:719–721

    CAS  PubMed  Google Scholar 

  • Lu P, Ren M, Zhai ZH (2001) Nuclear reconstitution of plant (Orychophragmus violaceus) demembranated sperm in cell-free extracts from animal (Xenopus laevis) eggs. J Struct Biol 136:89–95

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Zhai ZH (2001) Nuclear assembly of demembranated Xenopus sperm in plant cell-free extracts from Nicotiana ovules. Exp Cell Res 270:96–101

    Article  CAS  PubMed  Google Scholar 

  • Lui PPY, Kong SK, Kwok TT, Lee CY (1998) The nucleus of HeLa cell contains tubular structures for Ca2+ signaling. Biochem Biophys Res Commun 247:88–93

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Pérez E, Shaw P, Reader S, Aragón-Alcaide L, Miller T, Moore G (1999) Homologous chromosome pairing in wheat. J Cell Sci 112:1761–1769

    PubMed  Google Scholar 

  • Martins S, Eikvar S, Furukawa K, Collas P (2003) HA95 and LAP2 beta mediate a novel chromatin-nuclear interaction implicated in the initiation of DNA replication. J Cell Biol 160:177–188

    Article  CAS  PubMed  Google Scholar 

  • Martins SB, Eide T, Steen RL, Jahnsen T, Skalhegg BS, Collas P (2000) HA95 is a protein of the chromatin and nuclear matrix regulating nuclear envelope dynamics. J Cell Sci 113:3703–13

    CAS  PubMed  Google Scholar 

  • Masuda K, Xu Z-J, Takahashi S, Ito A, Ono M, Nomura K, Inoue M (1997) Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long γ-helical domain. Exp Cell Res 232:173–181

    Article  CAS  PubMed  Google Scholar 

  • Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140:499–509

    Article  CAS  PubMed  Google Scholar 

  • Matynia A, Dimitrov K, Mueller U, He X, Sazer S (1996) Perturbations in the spi1p GTPase cycle of Schizosaccharomyces pombe through its GTPase-activating protein and guanine nucleotide exchange factor components result in similar phenotypic consequences. Mol Cell Biol 16:6352–6362

    CAS  PubMed  Google Scholar 

  • Matzke AJM, Behensky C, Weiger T, Matzke MA (1992) A large conductance ion channel in the nuclear envelope of a higher plant cell. FEBS Lett 302:81–85

    Article  CAS  PubMed  Google Scholar 

  • McNulty AK, Saunders MJ (1992) Purification and immunological detection of pea nuclear intermediate filaments: evidence for plant nuclear lamins. J Cell Sci 103:407–414

    CAS  PubMed  Google Scholar 

  • Meier I (2000) A novel link between Ran signal transduction and nuclear envelope proteins in plants. Plant Physiol 124:1507–1510

    Article  CAS  PubMed  Google Scholar 

  • Merkle T (2001) Nuclear import and export of proteins in plants: a tool for the regulation of signaling. Planta 213:499–517

    Article  CAS  PubMed  Google Scholar 

  • Merkle T, Haizel T, Matsumoto T, Harter K, Dallmann G, Nagy F (1994) Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J 11:93–103

    Google Scholar 

  • Mikhailova EI, Sosnikhina SP, Kirillova GA, Tikholiz OA, Smirnov VG, Jones RN, Jenkins G (2001) Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.) J Cell Sci 114:1875–1882

    Google Scholar 

  • Mínguez A, Moreno Díaz de la Espina S (1993) Immunological characterization of lamins in the nuclear matrix of onion cells. J Cell Sci 106:431–439

    PubMed  Google Scholar 

  • Moreno Díaz de la Espina S, Barthelemy L, Cerezuela MA (1991) Isolation and ultrastructural characterization of the residual nuclear matrix in a plant cell system. Chromosoma 100:110–117

    Google Scholar 

  • Moritz M, Agard DA (2001) γ-Tubulin complexes and microtubule nucleation. Curr Opin Struct Biol 11:174–181

    Article  CAS  PubMed  Google Scholar 

  • Mounkes L, Kozlov S, Burke B, Steward CL (2003) The laminopathies: nuclear structure meets disease. Curr Opin Genet Dev 13:223–230

    Article  CAS  PubMed  Google Scholar 

  • Murphy SM, Preble AM, Patel UK, O’Connell KL, Dias DP, Moritz M, Agard D, Stults JT, Stearns T (2001) GCP5 and GCP6: two new members of the human γ-tubulin complex. Mol Biol Cell 12:3340–3352

    CAS  PubMed  Google Scholar 

  • Murphy SM, Urbani L, Stearns T (1998) The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components Spc97p and Spc98p. J Cell Biol 141:663–674

    Article  CAS  PubMed  Google Scholar 

  • Oegema K, Wiese C, Martin OC, Milligan RA, Iwamatsu A, Mitchison TJ, Zheng Y (1999) Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J Cell Biol 144:721–733

    Article  CAS  PubMed  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    PubMed  Google Scholar 

  • Park M, Dean M, Cooper CS, Schmidt M, O’Brien SJ, Blair DG, Vande Woude GF (1986) Mechanism of met oncogene activation. Cell 45:895–904

    PubMed  Google Scholar 

  • Paschal BM (2002) Translocation through the nuclear pore complex. Trends Biochem Sci 27:593–596

    Article  CAS  PubMed  Google Scholar 

  • Pay A, Resch K, Frohnmeyer H, Fejes E, Nagy F, Nick P (2002) Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. Plant J 30:699–709

    Article  CAS  PubMed  Google Scholar 

  • Podgornaya OI, Bugaeva EA, Voronin AP, Gilson E, Mitchell AR (2000) Nuclear envelope associated protein that binds telomeric DNAs. Mol Reprod Dev 57:16–25

    Article  CAS  PubMed  Google Scholar 

  • Quimby BB, Dasso M (2003) The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol 15:338–344

    Article  CAS  PubMed  Google Scholar 

  • Roberts K, Northcote DH (1970) Structure of the nuclear pore in higher plants. Nature 228:385–386

    CAS  PubMed  Google Scholar 

  • Rose A, Meier I (2001) A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proc Natl Acad Sci USA 98:15377–15382

    Article  CAS  PubMed  Google Scholar 

  • Saalbach G, Christov V (1994) Sequence of a plant cDNA from Vicia faba encoding a novel Ran-related GTP-binding protein. Plant Mol Biol 24:969–72

    CAS  PubMed  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev 2:621–627

    Article  CAS  Google Scholar 

  • Schiebel E (2000) γ-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr Opin Cell Biol 12:113–118

    Article  CAS  PubMed  Google Scholar 

  • Schmit AC, Endle MC, Lambert AM (1996) The perinuclear microtubule-organizing center and the synaptonemal complex of higher plants share a common antigen: its putative transfer and role in meiotic chromosomal ordering. Chromosoma 104:405–413

    Article  CAS  PubMed  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  CAS  PubMed  Google Scholar 

  • Scofield GN, Beven AF, Shaw PJ, Doonan JH (1992) Identification and localization of a nucleoporin-like protein component of the plant nuclear matrix. Planta 187:414–420

    CAS  Google Scholar 

  • Seltzer V, Pawlowski T, Campagne S, Canaday J, Erhardt M, Evrard J-L, Herzog E, Schmit A-C (2003) Multiple microtubule nucleation sites in higher plants. Cell Biol Int 27:267–269

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Yang J-Y, Ishikawa M, Bolle C, Ballesteros ML, Chua N-H (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999

    Article  CAS  Google Scholar 

  • Shibata S, Matsuoka Y, Yoneda Y (2002) Nucleocytoplasmic transport of proteins and poly(A)+ RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 7:421–434

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Blobel G (1993) The first membrane spanning region of the lamin B receptor is sufficient for sorting to the inner nuclear membrane. J Cell Biol 120:631–637

    CAS  PubMed  Google Scholar 

  • Soullam B, Worman HJ (1993) The amino-terminal domain of the lamin B receptor is a nuclear envelope targeting signal. J Cell Biol 120:1093–1100

    CAS  PubMed  Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 11:1151–65

    Google Scholar 

  • Stoffler D, Goldie KN, Feja B, Aebi U (1999) Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J Mol Biol 287:741–752

    Article  CAS  PubMed  Google Scholar 

  • Stoppin V, Lambert A-M, Vantard M (1996) Plant microtubule-associated proteins (MAPs) affect microtubule nucleation and growth at plant nuclei and mammalian centrosomes. Eur J Cell Biol 69:11–23

    CAS  PubMed  Google Scholar 

  • Stoppin V, Vantard M, Schmit A-C, Lambert A-M (1994) Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity. Plant Cell 6:1099–1106

    CAS  Google Scholar 

  • Strambio-de-Castillia C, Blobel G, Rout MP (1999) Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 144:839–855

    PubMed  Google Scholar 

  • Takahashi M, Yamagiwa A, Tamako N, Mukai H, Ono Y (2002) Centrosomal proteins CG-NAP and Kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol Biol Cell 13:3235–3245

    Article  CAS  PubMed  Google Scholar 

  • Trelles-Sticken E, Dresser ME, Scherthan H (2000) Meiotic telomere protein Ndj1p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing. J Cell Biol 151:95–106

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CRM, Wallace M, Morphew M, Perry P, Allshire R, Javerzat J-P, McIntosh JR, Gordon C (1998) Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J 17:6465–6476

    Article  CAS  PubMed  Google Scholar 

  • Wilson KL, Zastrow MS, Lee KK (2001) Lamins and disease: insights into nuclear infrastructure. Cell 104:647–650

    CAS  PubMed  Google Scholar 

  • Wolfner MF, Wilson KL (2001) The nuclear envelope: emerging roles in development and disease. Cell Mol Life Sci 58:1737–1740

    CAS  PubMed  Google Scholar 

  • Yanagawa Y, Hasezawa S, Kumagai F, Oka M, Fujimuro M, Naito T, Makino T, Yokosawa H, Tanaka K, Komamine A, Hashimoto J, Sato T, Nakagawa H (2002) Cell-cycle dependent dynamic changes of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol 43:604–613

    Google Scholar 

  • Zhang X, Yang H, Corydon MJ, Zhang X, Pedersen S, Korenberg JR, Chen XN, Laporte J, Gregersen N, Niebuhr E, Liu G, Bolund L (1999) Localization of a human nucleoporin 155 gene (NUP155) to the 5p13 region and cloning of its cDNA. Genomics 57:144–151

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Liu X, Wu M, Tao W, Zhai Z (2000) In vitro nuclear reconstitution could be induced in a plant cell-free system. FEBS Lett 480:208–212

    Article  CAS  PubMed  Google Scholar 

  • Zimowska G, Aris JP, Paddy MR (1997) A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J Cell Sci 110:927–944

    PubMed  Google Scholar 

  • Zimowska G, Paddy MR (2002) Structures and dynamics of Drosophila Tpr inconsistent with a static, filamentous structure. Exp Cell Res 276:223–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Diane Furtney for expert manuscript editing. Financial support by the National Science Foundation (MCB-0079577 and MCB-0209399) and the U.S. Department of Agriculture (Plant Growth and Development no. 2001-01901) to I.M. is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, A., Patel, S. & Meier, I. The plant nuclear envelope. Planta 218, 327–336 (2004). https://doi.org/10.1007/s00425-003-1132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1132-2

Keywords

Navigation