Skip to main content
Log in

Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Completed genome sequences have made it clear that multicopper oxidases related to laccase are widely distributed as multigene families in higher plants. Laccase-like multicopper oxidase (LMCO) sequences culled from GenBank and the Arabidopsis thaliana genome, as well as those from several newly cloned genes, were used to construct a gene phylogeny that clearly divided plant LMCOs into six distinct classes, at least three of which predate the evolutionary divergence of angiosperms and gymnosperms. Alignments of the predicted amino acid sequences highlighted regions of variable sequence flanked by the highly conserved copper-binding domains that characterize members of this enzyme family. All of the predicted proteins contained apparent signal sequences. The expression of 13 of the 17 LMCO genes in A. thaliana was assessed in different tissues at various stages of development using RT-PCR. A diversity of expression patterns was demonstrated with some genes being expressed in a constitutive fashion, while others were only expressed in specific tissues at a particular stage of development. Only a few of the LMCO genes were expressed in a pattern that could be considered consistent with a major role for these enzymes in lignin deposition. These results are discussed in the context of other potential physiological functions for plant LMCOs, such as iron metabolism and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BLAST:

Basic local alignment search tool

CTAB:

Cetyl trimethylammonium bromide

LMCO:

Laccase-like multicopper oxidase

MCO:

Multicopper oxidase

MPSS:

Massively parallel signature sequencing

PCR:

Polymerase chain reaction

pI:

Isoelectric point

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcript polymerase chain reaction

TBE:

Tris borate EDTA buffer

References

  • Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258–260

    Article  CAS  PubMed  Google Scholar 

  • Aramayo R, Timberlake WE (1990) Sequence and molecular structure of the Aspergillus nidulans yA (laccase 1) gene. Nucleic Acids Res 18:3415–3415

    CAS  PubMed  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674

    CAS  Google Scholar 

  • Brouwers GJ, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Jong EWDV (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl Environ Microb 65:1762–1768

    Google Scholar 

  • Butt VS (1980) Direct oxidases and related enzymes. In: Davies DD (ed) The biochemistry of plants, vol. 2. Academic, New York, pp 81–123

  • Clegg MT, Cummings MP, Durbin ML (1997) The evolution of plant nuclear genes. Proc Natl Acad Sci USA 94:7791–7798

    Article  CAS  PubMed  Google Scholar 

  • De Silva DM, Askwith CC, Eide D, Kaplan J (1995) The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem 270:1098–1101

    Article  PubMed  Google Scholar 

  • Dean JFD, Eriksson K-EL (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung 48:21–33

    CAS  Google Scholar 

  • Dean JFD, LaFayette PR, Rugh C, Tristram AH, Hoopes JT, Merkle SA, Eriksson K-EL (1998) Laccases associated with lignifying tissues. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. ACS Symposium Series 697:96–108

    CAS  Google Scholar 

  • Du YM, Oshima R, Kumanotani J (1984) Reversed-phase liquid-chromatographic separation and identification of constituents of urushiol in the sap of the lac tree, Rhus vernicifera. J Chromatogr 284:463–473

    Article  CAS  Google Scholar 

  • Eggert C, LaFayette PR, Temp U, Eriksson K-EL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89–92

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    CAS  PubMed  Google Scholar 

  • Grass G, Rensing C (2001) Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183:2145–2147

    Article  CAS  PubMed  Google Scholar 

  • Hebsgaard M, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452

    Article  CAS  PubMed  Google Scholar 

  • Hoopes JT, Dean JFD (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42:27–33

    Article  CAS  PubMed  Google Scholar 

  • Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotech 55:387–394

    Article  Google Scholar 

  • Kim C, Lorenz WW, Hoopes JT, Dean JFD (2001) Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 183:4866–4875

    Article  CAS  PubMed  Google Scholar 

  • LaFayette PR, Eriksson K-EL, Dean JFD (1999) Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  CAS  PubMed  Google Scholar 

  • Li W-H (1997) Molecular evolution. Sinauer Associates, Sunderland, pp 278–429

    Google Scholar 

  • Liu L, Dean JFD, Friedman WE, Eriksson K-EL (1994) A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J 6:213–224

    Article  CAS  Google Scholar 

  • Martin W, Lydiate D, Brinkmann H, Forkmann G, Saedler H, Cerff R (1993) Molecular phylogenies in angiosperm evolution. Mol Biol Evol 10:140–162

    CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551-565

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt A (1997) Multi-copper oxidases. World Scientific, Singapore

    Google Scholar 

  • Meyers BB, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD (2004) Arabidopsis MPSS: an online resource for quantitative expression analysis. Plant Physiol 135:801--813

    Google Scholar 

  • Musci G (2001) Ceruloplasmin, the unique multi-copper oxidase of vertebrates. Protein Peptide Lett 8:159–169

    Article  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    CAS  Google Scholar 

  • O’Malley DM, Whetten R, Bao W, Chen CL, Sederoff RR (1993) The role of laccase in lignification. Plant J 4:751–757

    Article  CAS  Google Scholar 

  • Palmer AE, Randall DW, Xu F, Solomon EI (1999) Spectroscopic studies and electronic structure description of the high potential type 1 copper site in fungal laccase: Insight into the effect of the axial ligand. J Am Chem Soc 121:7138–7149

    Article  CAS  Google Scholar 

  • Parkin I, Sharpe A, Keith D, Lydiate D (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    CAS  Google Scholar 

  • Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet A-M, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. Eur J Biochem 259:485–495

    Article  CAS  PubMed  Google Scholar 

  • Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR (1996) Effect of the laccase gene, CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184:377–386

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sato Y, Bao WL, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155

    CAS  Google Scholar 

  • Shi XL, Stoj C, Romeo A, Kosman DJ, Zhu ZW (2003) Fre1p Cu2+ reduction and fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. J Biol Chem 278:50309–50315

    Article  CAS  PubMed  Google Scholar 

  • Sterjiades R, Dean JFD, Eriksson K-EL (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    CAS  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques 14:748–758

    CAS  PubMed  Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland

  • Urbanowski JL, Piper RC (1999) The iron transporter fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 274:38061–38070

    Article  CAS  PubMed  Google Scholar 

  • vanWaasbergen LG, Hildebrand M, Tebo BM (1996) Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp strain SG-1. J Bacteriol 178:3517–3530

    CAS  PubMed  Google Scholar 

  • Xu F, Palmer AE, Yaver DS, Berka RM, Gambetta GA, Brown SH, Solomon EI (1999) Targeted mutations in a Trametes villosa laccase—axial perturbations of the T1 copper. J Biol Chem 274:12372–12375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Chieh-Ting Wang for his assistance with tissue collection and RT-PCR assays. This work was supported by and NSF/Alfred P. Sloan Postdoctoral Fellowship (DBI-9803949) to B.C.M and a grant from the U.S. Department of Energy, Energy Biosciences Program (DE-FG02-99ER20336) to J.F.D.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey F. D. Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCaig, B.C., Meagher, R.B. & Dean, J.F.D. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221, 619–636 (2005). https://doi.org/10.1007/s00425-004-1472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1472-6

Keywords

Navigation