Skip to main content

Advertisement

Log in

The glutathione peroxidase homologous gene Gpxh in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The expression of the glutathione peroxidase homologous gene Gpxh, known to be specifically induced by the formation of singlet oxygen (1O2), was analyzed in cells of Chlamydomonas reinhardtii exposed to environmental conditions causing photoinhibition. Illumination with high light intensities, leading to an increased formation of 1O2 in photosystem II, continuously induced the expression of Gpxh in cell for at least 2 h. Phenolic herbicides like dinoterb, raise the rate of 1O2 formation by increasing the probability of charge recombination in photosystem II via the formation of the primary radical pair and thereby 3P680 formation (Fufezan C et al. 2002, FEBS Letters 532, 407–410). In the presence of dinoterb the light-induced loss of the D1 protein in C. reinhardtii was increased and the high light-induced Gpxh expression was further stimulated. DCMU, a urea-type herbicide, causing reduced 1O2 generation in photosystem II, protected the D1 protein slightly against degradation and downregulated the expression of the Gpxh gene compared to untreated cells exposed to high light intensities. This indicates that the Gpxh expression is induced by 1O2 under environment conditions causing photoinhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

EPR:

Electron paramagnetic resonance spectroscopy

Gpxh :

Glutathione peroxidase homologous gene

PSII:

Photosystem II

Q A :

Primary quinone acceptor in photosystem II

Q B :

Secondary quinone acceptor in photosystem II

ROS:

Reactive oxygen species

TEMP:

2,2,6,6-Tetramethylpiperidine

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

Tub2B :

β-Tubulin gene

References

  • Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, Niyogi KK (2004) Photo-oxidative stress in a xanthophyll-defiecient mutant of Chlamydomnas. J Biol Chem 279:6337–6344

    Article  PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT, Yokum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylacoid membranes. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 5:779–795

    Article  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3): REVIEWS/3004

  • Fischer BB, Krieger-Liszkay A, Eggen RIL (2004) Photosensitizers neutral red (type I) and rose bengal (type II) cause light-dependent toxicity in Chlamydomonas reinhardtii and induce the Gpxh gene via increased singlet oxygen formation. Environ Sci Technol 38:6307–6313

    Article  PubMed  CAS  Google Scholar 

  • Fischer BB, Krieger-Liszkay A, Eggen RIL (2005) Oxidative stress induced by the photosensitizers neutral red (type I) or rose bengal (type II) in the light causes different molecular responses in Chlamydomonas reinhardtii. Plant Sci 168:747–759

    Article  CAS  Google Scholar 

  • Fufezan C, Rutherford AW, Krieger-Liszkay A (2002) Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407–410

    Article  PubMed  CAS  Google Scholar 

  • Gorman AA, Rodgers MA (1992) Current perspectives of singlet oxygen detection in biological environments. J Photochem Photobiol 14:159–176

    Article  CAS  Google Scholar 

  • Grether-Beck S, Bonizzi G, Schmitt-Brenden H, Felsner I, Timmer A, Sies H, Johnson JP, Piette J, Krutmann J (2000). Non-enzymatic triggering of the ceramide signaling cascade by solar UVA radiation. Embo J 19:5793–5800

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic, San Diego

    Google Scholar 

  • Hideg E, Kalai T, Hideg K, Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37:11405–11411

    Article  PubMed  CAS  Google Scholar 

  • Hideg E, Kalai T, Hideg K, Vass I (2000) Do oxidative stress conditions impairing photosynthesis in the light manifest as photoinhibition? Philos Trans R Soc Lond B Biol Sci 355(1402):1511–1516

    Article  PubMed  CAS  Google Scholar 

  • Im CS, Zhang Z, Shrager J, Chang CW, Grossmann AR (2003) Analysis of light and CO2 regulation in Chlamydomonas reinhardtii unsing genome-wide approaches. Photosynth Res 75:111–125

    Article  PubMed  CAS  Google Scholar 

  • Jansen MA, Depka B, Trebst A, Edelman M (1993) Engagement of specific sites in the plastoquinone niche regulates degradation of the D1 protein in photosystem II. J Biol Chem 268:21246–21252

    PubMed  CAS  Google Scholar 

  • Johnson GN, Boussac A, Rutherford AW (1994) The origin of 40–50°C thermoluminescence bands in Photosystem II. Biochim Biophys Acta 1184:85–92

    Article  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–655

    Article  PubMed  CAS  Google Scholar 

  • Keren N, Ohad I(1998). State transition and photoinhibition. In: Rochaix JM, Michel GC, Sabeeha M (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Dordrecht, Kluwer, pp 569–596

    Google Scholar 

  • Keren N, Gong H, Ohad I (1995) Oscillations of reaction centre II-D1 protein degradation in vivo induced by repetitive flashes. J Biol Chem 270:806–814

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manbe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A, Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phytotoxicity. Biochemistry 37:17339–17344

    Article  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W, Beck CF (1997) Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proc Natl Acad Sci USA 94:14168–14172

    Article  PubMed  CAS  Google Scholar 

  • Kropat J, Oster U, Rüdiger W, Beck CF (2000) Chloroplast signalling in the light induction of nuclear HSP70 genes requires the accumulation of chlorophyll precursors and their accessibility to cytoplasm/nucleus. Plant J 24:523–531

    Article  PubMed  CAS  Google Scholar 

  • Laasch H (1987) Non-photochemical quenching of chlorophyll-a-fluorescence in isolated chloroplasts under conditions of stressed photosynthesis. Planta 171:220–226

    Article  CAS  Google Scholar 

  • Leisinger U, Rufenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJ, Eggen RIL (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol 46:395–408

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S (2000) Are diverse signalling pathways integrated in the regulation of arabidopsis antioxidant defence gene expression in response to excess excitation energy? Philos Trans R Soc Lond B Biol Sci 355:1531–1540

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, Yoshida S, Ono T (1996) Differential effects of urea/triazine-type and phenol-type photosystem II inhibitors on inactivation of the electron transport and degradation of the D1 protein during photoinhibition. Plant Cell Physiol 37:673–680

    CAS  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    Article  PubMed  CAS  Google Scholar 

  • Opanasenko VK, Semenova GA, Agafonov AV, Gubanova ON (2002) Effects of heterocyclic and tertiary permeant amines on the electron transfer in thylakoid membranes. Photosynth Res 72:243–253

    Article  PubMed  CAS  Google Scholar 

  • op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Schutze K, Brost M, Oelmuller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130

    Article  PubMed  CAS  Google Scholar 

  • Polte T, Tyrrell RM (2004) Involvement of lipid peroxidation and organic peroxides in UVA-induced Matrix Metalloproteinase-1 expression. Free Radic Biol Med 36, 1566–1574

    Article  PubMed  CAS  Google Scholar 

  • Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–653

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483–486

    Article  PubMed  CAS  Google Scholar 

  • Sies H, Menck CF (1992) Singlet oxygen induced DNA damage. Mutat Res 275:367–375

    PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83

    Article  PubMed  CAS  Google Scholar 

  • Telfer A (2002) What is ß-carotene doing in the photosystem II reaction centre? Philos Trans R Soc Lond B 357:1431–1440

    Article  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated phostosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. J Biol Chem 269:13244–13253

    PubMed  CAS  Google Scholar 

  • Thomas JP, Maiorino M, Ursini F, Girotti AW (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. J Biol Chem 265:454–461

    PubMed  CAS  Google Scholar 

  • Trebst A, Depka B, Hollander-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516:156–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Rutherford (CEA Saclay, France) for scientific discussions, B. Depka (Ruhr-University Bochum), K. Kienzler and S. Kuhn (both University of Freiburg) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Krieger-Liszkay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, B.B., Eggen, R.I.L., Trebst, A. et al. The glutathione peroxidase homologous gene Gpxh in Chlamydomonas reinhardtii is upregulated by singlet oxygen produced in photosystem II. Planta 223, 583–590 (2006). https://doi.org/10.1007/s00425-005-0108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0108-9

Keywords

Navigation