Skip to main content
Log in

Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The vacuole is a large, multifunctional organelle related to the processes of cell expansion, solute accumulation, regulation of cytoplasmic ion concentrations, pH homeostasis and osmoregulation, which are directly or indirectly achieved by vacuolar H+-pumps: vacuolar H+-ATPase (V-ATPase; EC 3.6.1.3) and vacuolar H+-pyrophosphatase (V-PPase; EC 3.6.1.1). In this study, we produced antisense-transgenic tomatoes (Lycopersicon esculentum L.) of the V-ATPase A subunit, which is under the control of the fruit-specific 2A11 promoter. One β-glucuronidase (GUS)-transgenic line (GUS control) and seven A subunit antisense-transgenic lines were obtained. The amount of V-ATPase A subunit mRNA in fruit decreased in all antisense-transgenic lines, but in leaves showed no difference compared with the GUS control line and the nontransformant, suggesting that suppression of the V-ATPase A subunit by a 2A11 promoter is limited to fruit. The antisense-transgenic plants had smaller fruits compared with the GUS control line and the nontransformant. Surprisingly, fruits from the antisense-transgenic plants, except the fruit that still had relatively high expression of A subunit mRNA, had few seeds. Sucrose concentration in fruits from the antisense-transgenic plants increased, but glucose and fructose concentrations did not change. These results show the importance of V-ATPase, not only in fruit growth, but also in seed formation and in sugar composition of tomato fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

V-ATPase:

Vacuolar H+-ATPase

V-PPase:

Vacuolar H+-pyrophosphatase

WT:

Wild type

References

  • Bohner J, Bangerth F (1988) Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in fruit size. Physiol Plant 72:316–320

    Article  CAS  Google Scholar 

  • Chengappa S, Guilleroux M, Phillips W, Shields R (1999) Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Mol Biol 40:213–221

    Article  PubMed  CAS  Google Scholar 

  • Coker JS, Jones D, Davies E (2003) Identification, conservation, and relative expression of V-ATPase cDNAs in tomato plants. Plant Mol Biol Rep 21:145–158

    Article  CAS  Google Scholar 

  • Davies JN, Kempton RJ (1975) Changes in the individual sugars of tomato fruit during ripening. J Sci Food Agric 26:1103–1110

    Article  CAS  Google Scholar 

  • Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002) Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiol Plant 114:259–270

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria E, Baroja-Fernandez E, Jose Munz F, Pozueta-Romero J (2005) Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells. Plant Cell Physiol 46:474–481

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy G, David HB, Gruissem W (1993) Fruit: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Gogarten JP, Fichmann J, Braun Y, Morgan L, Styles P, Taiz SL, DeLapp K, Taiz L (1992) The use of antisense mRNA to inhibit the tonoplast H+-ATPase in carrot. Plant Cell 4:851–864

    Article  PubMed  CAS  Google Scholar 

  • Griffiths A, Prestage S, Linforth R, Zhang J, Taylor A, Grierson D (1999) Fruit-specific lipoxygenase suppression in antisense-transgenic tomatoes. Postharvest Biol Technol 17:163–173

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  PubMed  CAS  Google Scholar 

  • Martineau B, Houck CM, Sheehy RE, Hiatt WR (1994) Fruit-specific expression of the A. tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. Plant J 5:11–19

    Article  CAS  Google Scholar 

  • Matsuoka K, Higuchi T, Maeshima M, Nakamura K (1997) A vacuolar-type H+-ATPase in a nonvacuolar organelle is required for sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 9:533–546

    Article  PubMed  CAS  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R Fraley R (1986) Leaf disc transformation of cultivated tomato (L esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  Google Scholar 

  • Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472

    Article  CAS  Google Scholar 

  • Milner AJ, Smith SJ (1995) Properties of proton and sugar transport at the tonoplast of tomato (Lycopersicon esculentum) fruit. Physiol Plant 94:399–410

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nakajima N, Nakagawa N, Imaseki H (1988) Molecular size of wound-induced 1-aminocyclopropane-1-carboxylate synthase from Cucurbita maxima Duch. and change of translatable mRNA of the enzyme after wounding. Plant Cell Physiol 29:989–998

    CAS  Google Scholar 

  • Nguyen-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  PubMed  CAS  Google Scholar 

  • Pear JR, Ridge N, Rasmussen R, Rose RE, Houck CM (1989) Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomato. Plant Mol Biol 13:639–651

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak R (2000) Structure, function, and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465:17–36

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Scott JW, Harbaugh BK (1989) Micro-Tom a miniature dwarf tomato. Fla Agr Exp Sta Circ 370:1–6

    Google Scholar 

  • Shiratake K, Kanayama Y, Maeshima M, Yamaki S (1997a) Changes in H+-pumps and tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit. Plant Cell Physiol 38:1039–1045

    CAS  Google Scholar 

  • Shiratake K, Kanayama Y, Yamaki S (1997b) Characterization of hexose transporter for facilitated diffusion of the tonoplast vesicles from pear fruit. Plant Cell Physiol 38:910–916

    CAS  Google Scholar 

  • Strompen G, Dettmer J, Stierhof YD, Schumacher K, Jugens G, Mayer U (2005) Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis. Plant J 41:125–132

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Shiratake K, Yamaki S (2000) Seasonal changes in the activities of vacuolar H+-pumps and their gene expression in the developing Japanese pear fruit. J Jpn Soc Hort Sci 69:15–21

    Article  CAS  Google Scholar 

  • Sze H, Schumacher K, Muller ML, Padmanaban S, Romieu C (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci 7:157–161

    Article  PubMed  CAS  Google Scholar 

  • Takanokura Y, Komatsu A, Omura M, Akihama T (1998) Cloning and expression analysis of vacuolar H+-ATPase 69-kDa catalytic subunit cDNA in citrus (Citrus unshiu Marc.). Biochim Biophys Acta 1414:265–272

    Article  PubMed  CAS  Google Scholar 

  • Teitel DC, Arad S, Birnbaum E, Mizrahi Y (1985) Growth and development of tomato fruits in vivo and in vitro. Plant Growth Reg 3:179–189

    Article  CAS  Google Scholar 

  • Terrier N, Francois-Xavier S, Ageorges A, Romieu C (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20–28

    Article  PubMed  CAS  Google Scholar 

  • Van Haaren MJJ, Houck CM (1991) Strong negative and positive regulatory elements contribute to the high-level fruit-specific expression of the tomato 2A11 gene. Plant Mol Biol 17:615–630

    Article  PubMed  Google Scholar 

  • Van Haaren MJJ, Houck CM (1993) A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol Biol 21:625–640

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hitoshi Mori of Nagoya University and Dr. Daisuke Shibata of Kazusa DNA Research Institute for their kind gift of the mRNA of tomato fruit “Super First” and seeds of “Micro-Tom”, respectively. “Kantaro Jr.” fruits were supplied by Mr. Takaharu Nakamura, a tomato farmer in Aichi Prefecture. This work was supported by Grant-in-Aids for Specially Promoted Research (grant no. 10219203 to S.Y. and K.S.) and the 21st Century COE Program (grant no. 14COEA02 to S.Y.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiro Shiratake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amemiya, T., Kanayama, Y., Yamaki, S. et al. Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation. Planta 223, 1272–1280 (2006). https://doi.org/10.1007/s00425-005-0176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0176-x

Keywords

Navigation