Skip to main content

Advertisement

Log in

Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Here we report on the isolation and characterization of a somatic embryogenesis receptor-like kinase (OsSERK1) gene in rice (Oryza sativa). The OsSERK1 gene belongs to a small subfamily of receptor-like kinase genes in rice and shares a highly conserved gene structure and extensive sequence homology with previously reported plant SERK genes. Though it has a basal level of expression in various rice organs/tissues, as high expression level was detected in rice callus during somatic embryogenesis. Suppression of OsSERK1 expression in transgenic calli by RNA interference resulted in a significant reduction of shoot regeneration rate (from 72% to 14% in the japonica rice Zhonghua11). Overexpression of OsSERK1, however, increased the shoot regeneration rate (from 72% to 86%). Interestingly, OsSERK1 is significantly activated by the rice blast fungus, particularly during the incompatible interaction, and is associated with host cell death in Sekigushi lesion mimic mutants. This gene is also inducible by defense signaling molecules such as salicylic acid, jasmonic acid, and abscisic acid. Furthermore, constitutive overexpression of OsSERK1 in two rice cultivars led to an increase in host resistance to the blast fungus. Our data suggest that OsSERK1 may partially mediate defense signal transduction in addition to its basic role in somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RLK :

Receptor-like kinase

SERK :

Somatic embryogenesis receptor-like kinase

LRR :

Leucine-rich repeat

RACE :

Rapid amplification of cDNA ends

SA :

Salicylic acid

BTH :

Benzothiadiazole

JA :

Jasmonic acid

ABA :

Abscisic acid

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Baudino S, Hansen S, Brettschneider R, Hecht V, Dresselhaus T, Lörz H, Dumas C, Rogowsky P (2001) Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10

    Article  PubMed  CAS  Google Scholar 

  • Becraft PW (1998) Receptor kinases in plant development. Trends Plant Sci 3:384–388

    Article  Google Scholar 

  • Becraft PW (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192

    Article  PubMed  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Harp TL, Correll JC (1998) Recovery and characterization of spontaneous, selenate-resistant mutants of Magnapothe grisea, the rice blast pathogen. Mycologia 90:954–963

    Article  Google Scholar 

  • He Z, Wang Z, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288:2360–2363

    Article  PubMed  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1986) A new method for predicting signal sequence cleavage site. Nucleic Acids Res 14:4683–4690

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Höfman K, Stoffel W (1993) Tmbase-A database of membrane spanning protein segment. Biol Chem 347:166–172

    Google Scholar 

  • Jinn TL, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14:108–117

    PubMed  CAS  Google Scholar 

  • van der Knaap E, Song WY, Ruan DL, Sauter M, Ronald PC, Kende H (1999) Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase. Plant Physiol 120:559–570

    Article  PubMed  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biol Sci 19:415–420

    Article  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new DNA binding proteins. Science 240:1759–1764

    Article  PubMed  CAS  Google Scholar 

  • Lease K, Ingham E, Walker JC (1998) Challenges in understanding RLK function. Curr Opin Plant Biol 1:388–392

    Article  PubMed  CAS  Google Scholar 

  • Lee MW, Qi M, Yang Y (2001) A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Microbe Interact 14:527–535

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  PubMed  CAS  Google Scholar 

  • Marchetti MA, Bollich CN, Uecker FA (1983) Spontaneous occurrence of the sekiguchi lesion in two American rice lines: Its induction, inheritance, and utilization. Phytopathology 73:603–606

    Article  Google Scholar 

  • Nam KH, Li J (2004) The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 16:2406–2417

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Schumacher K, Chory J (2000) Brassinosteroid signal transduction: still casting the actors. Curr Opin Plant Biol 3:79–84

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Gadella TW Jr, van Erp H, Hecht V, de Vries SC (2001a) Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. J Mol Biol 309:641–655

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Vervoort J, de Vries SC (2001b) Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. J Biol Chem 276:41263–41269

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Russinova E, Gadella TW Jr, Willemse J, De Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev 16:1707–1720

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527

    Article  PubMed  CAS  Google Scholar 

  • Szekeres M (2003) Brassinosteroid and systemin: two hormones perceived by the same receptor. Trends Plant Sci 8:102–104

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Kawasaki T, Henmi K, ShiI K, Kodama O, Satoh H, Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17:535–545

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Yuan F, Leister RT, Ausubel FM, Katagiri F (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2. Plant Cell 12:2541–2554

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42

    Article  PubMed  CAS  Google Scholar 

  • Torii KU (2000) Receptor kinase activation and signal transduction in plants: an emerging picture. Curr Opin in Plant Biol 3:361–367

    Article  CAS  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46

    Article  PubMed  CAS  Google Scholar 

  • Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746

    Article  PubMed  CAS  Google Scholar 

  • Tornero P, Mayda E, Gómez MD, Cañas L, Conjero V, Vera P (1996) Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant J 10:315–330

    Article  PubMed  CAS  Google Scholar 

  • Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11: 393–406

    Article  PubMed  CAS  Google Scholar 

  • Trotochaud AE, Jeong S, Clark SE (2000) CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase. Science 289:613–617

    Article  PubMed  CAS  Google Scholar 

  • Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Lee MW, Qi M, Yang Y (2001) Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol Plant Microbe Interact 14:685–692

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush GS, Wang GL (2000) Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact 13:869–876

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs M.B. Wang and P.M. Waterhouse (CSIRO Plant Industry, Australia) for providing the pHellgate8 vector. This work was supported by the Arkansas Rice Research and Promotion Board, the National Science and Technology Special Key Project—Functional Genomics and Biological Chip (2002AA2Z1002) and the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Xiong, L. & Yang, Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222, 107–117 (2005). https://doi.org/10.1007/s00425-005-1534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1534-4

Keywords

Navigation