Skip to main content
Log in

Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Laccase, EC 1.10.3.2 or p-diphenol:dioxygen oxidoreductase, has been proposed to be involved in lignin synthesis in plants based on its in vitro enzymatic activity and a close correlation with the lignification process in plants. Despite many years of research, genetic evidence for the role of laccase in lignin synthesis is still missing. By screening mutants available for the annotated laccase gene family in Arabidopsis, we identified two mutants for a single laccase gene, AtLAC15 (At5g48100) with a pale brown or yellow seed coat which resembled the transparent testa (tt) mutant phenotype. A chemical component analysis revealed that the mutant seeds had nearly a 30% decrease in extractable lignin content and a 59% increase in soluble proanthocyanidin or condensed tannin compared with wild-type seeds. In an in vitro enzyme assay, the developing mutant seeds showed a significant reduction in polymerization activity of coniferyl alcohol in the absence of H2O2. Among the dimers formed in the in vitro assay using developing wild-type seeds, 23% of the linkages were β-O-4 which resembles the major linkages formed in native lignin. The evidence strongly supports that AtLAC15 is involved in lignin synthesis in plants. To our knowledge, this is the first genetic evidence for the role of laccase in lignin synthesis. Changes in seed coat permeability, seed germination and root elongation were also observed in the mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674

    Article  PubMed  CAS  Google Scholar 

  • Beeckman T, De Rycke R, Viane R, Inze D (2000) Histological study of seed coat development in Arabidopsis thaliana. J Plant Res 113:139–148

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Campbell MM, Ellis BE (1992) Fungal elicitor-mediated responses in pine cell-cultures. 1. Induction of phenylpropanoid metabolism. Planta 186:409–417

    Article  CAS  Google Scholar 

  • Chapple CCS, Shirley BW, Zook M, Hammerschmidt R, Somerville SC (1994) Secondary metabolism in Arabidopsis. In: Meyerowitz EM, Somerville SC (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 989–1030

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (Secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, MD, pp 1250–1318

    Google Scholar 

  • Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415

    Article  PubMed  CAS  Google Scholar 

  • Dean JFD, LaFayette PR, Rugh C, Tristram AM, Hoopes JT, Eriksson KEL, Markle SA (1998) Laccase associated with lignifying vascular tissues. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. American Chemical Society, Washington, DC, pp 96–108

    Google Scholar 

  • Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon I, Peeters AJM, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: Regulation of differentiation and role in seed development. Plant Cell 15:2514–2531

    Article  PubMed  CAS  Google Scholar 

  • Dharmawardhana DP, Ellis BE, Carlson JE (1992) Characterization of vascular lignification in Arabidopsis thaliana. Can J Bot 70:2238–2244

    Article  CAS  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins - a final frontier in flavonoid research? New Phytol 165:9–28

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Wiley Publishing Agencies, New York

    Google Scholar 

  • Hoopes JT, Dean JFD (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42:27–33

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  PubMed  CAS  Google Scholar 

  • LaFayette PR, Eriksson KEL, Dean JFD (1999) Characterization and heterologous expression of laccase cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  PubMed  CAS  Google Scholar 

  • Liang M, Haroldsen V, Cai X, Wu Y (2006) Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ 29:746–753. DOI: 2010.1111/j.1365-3040.2005.01435.x

    Google Scholar 

  • Marles MAS, Gruber MY (2004) Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agr 84:251–262

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  PubMed  CAS  Google Scholar 

  • McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636

    Article  PubMed  CAS  Google Scholar 

  • Mole S, Waterman PG (1987a) A Critical analysis of techniques for measuring tannins in ecological studies. 1. Techniques for chemically defining tannins. Oecologia 72:137–147

    Article  Google Scholar 

  • Mole S, Waterman PG (1987b) A Critical analysis of techniques for measuring tannins in ecological studies. 2. Techniques for biochemically defining tannins. Oecologia 72:148–156

    Article  Google Scholar 

  • Pourcel L, Routaboul J-M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Bao WL, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155

    Article  CAS  Google Scholar 

  • Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing-radiation on a plant genome – analysis of 2 Arabidopsis transparent testa mutations. Plant Cell 4:333–347

    Article  PubMed  CAS  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Stangeland B, Salehian Z (2002) An improved clearing method for GUS assay in Arabidopsis endosperm and seeds. Plant Mol Biol Rep 20:107–114

    Article  Google Scholar 

  • Sterjiades R, Dean JFD, Eriksson KEL (1992) Laccase from sycamore maple (Acer-pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Article  PubMed  CAS  Google Scholar 

  • Terashima N, Atalla RH, Ralph SA, Landucci LL, Lapierre C, Monties B (1996) New preparations of lignin polymer models under conditions that approximate cell wall lignification. 2. Structural characterization of the models by thioacidolysis. Holzforschung 50:9–14

    Article  CAS  Google Scholar 

  • Windsor JB, Symonds VV, Mendenhall J, Lloyd AM (2000) Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J 22:483–493

    Article  PubMed  CAS  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (urushi). J Chem Soc 43:472–486

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs. Anne Anderson and Jennifer MacAdam for critical reading of this manuscript. We are grateful to Drs. Margaret Gruber, Susan Marles and John Ralph for very helpful discussions and suggestions on lignin analysis in seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, M., Davis, E., Gardner, D. et al. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis . Planta 224, 1185–1196 (2006). https://doi.org/10.1007/s00425-006-0300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0300-6

Keywords

Navigation