Skip to main content
Log in

Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The surface of plants is covered by cuticular wax, which contains a mixture of very long-chain fatty acid (VLCFA) derivatives. This wax surface provides a hydrophobic barrier which reduces non-stomatal water loss. One component of the cuticular wax is the alkyl esters, which typically contain a VLCFA esterified to an alcohol of a similar length. As part of an EST project, we recently identified an acyltransferase with 19% sequence identity (amino acid) to a bacterial ‘bifunctional’ wax-ester synthase/diacylglycerol acyltransferase (WS/DGAT). Northern analysis revealed that this petunia homologue was expressed predominantly within the petals. The cDNA encoding the WS/DGAT homologue was introduced into a yeast strain deficient in triacylglycerol biosynthesis. The expressed protein failed to restore triacylglycerol biosynthesis, indicating that it lacked DGAT activity. However, isoamyl esters of fatty acids were detected, which suggested that the petunia cDNA encoded a wax-synthase. Waxes were extracted from petunia petals and leaves. The petal wax extract was rich in VLCFA esters of methyl, isoamyl, and short-to-medium straight chain alcohols (C4–C12). These low molecular weight wax-esters were not present in leaf wax. In-vitro enzymes assays were performed using the heterologously expressed protein and 14C-labelled substrates. The expressed protein was membrane bound, and displayed a preference for medium chain alcohols and saturated very long-chain acyl-CoAs. In fact, the activity would be sufficient to produce most of the low molecular wax-esters present in petals, with methyl-esters being the exception. This work is the first characterization of a eukaryotic protein from the WS/DGAT family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BHT:

Butlylated hydroxytoluene

BSA:

Bovine serum albumin

BCA:

Bicinchonic acid

BSTFA:

N,O-bis-(trimethylsilyl)-trifluoroacetamide

CoA:

Coenzyme A

DAG:

Diacylglycerol

DGAT:

Diacylglycerol acyltransferase

EST:

Expressed sequence tag

FAMES:

Fatty-acid methyl esters

MGAT:

Monoacylglycerol acyltransferase

TAG:

Triacylglycerides

TMSC:

Trimethylchlorosilane

TMS:

Trimethylsilyl

VCLFA:

Very long chain fatty acid

VLC:

Very long chain

WS:

Wax synthase

References

  • Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AMM, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–661

    Article  PubMed  CAS  Google Scholar 

  • Banas A, Carlsson AS, Huang B, Lenman M, Banas W, Lee M, Noiriel A, Benveniste P, Schaller H, Bouvier-Nave P, Stymne S (2005) Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid:sterol acyltransferase) different from the yeast and mammalian acyl-CoA:sterol acyltransferases. J Biol Chem 280:34626–34634

    Article  PubMed  CAS  Google Scholar 

  • Baur P, Marzouk H, Schönherr J (1999) Estimation of path lengths for diffusion of organic compounds through leaf cuticles. Plant Cell Environ 22:291–299

    Article  CAS  Google Scholar 

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878

    Article  PubMed  CAS  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard MR, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed  CAS  Google Scholar 

  • Cases S, Smith SJ, Zheng Y-W, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  PubMed  CAS  Google Scholar 

  • Cheng JB, Russell DW (2004) Mammalian wax biosynthesis: II. expression cloning of wax synthase cDNAs encoding a member of the acyltransferase gene family. J Biol Chem 279:37798–37807

    Article  PubMed  CAS  Google Scholar 

  • Chomczymski P, Saachi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Christie WW (2003) Preparation of derivatives of fatty acids. In: Christie WW (ed) Lipid analysis: isolation, separation, identification and structural analysis if lipids. The Oily Press, Bridgewater, UK, pp 205–224

    Google Scholar 

  • Dahlqvist A, Ståhl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  PubMed  CAS  Google Scholar 

  • Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR, Lanterman MJ, Danner DJ, Pearson BM, Sanz S, Harrison SJ, Hewlins MJE (1998) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    Article  Google Scholar 

  • Gaigg B, Neergaard TBF, Schneiter R, Hansen JK, Færgeman NJ, Jensen NA, Andersen JR, Friis J, Sandhoff R, Schrøder HD, Knudsen J (2001) Depletion of acyl-coenzyme A-binding protein affects sphingolipid synthesis and causes vesicle accumulation and membrane defects in Saccharomyces cerevisiae. Mol Biol Cell 12:1147–1160

    PubMed  CAS  Google Scholar 

  • Geitz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  Google Scholar 

  • Goodwin SM, Kolosova N, Kish CM, Wood KV, Dudareva N, Jenks MA (2003) Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol Plant 117:435–443

    Article  PubMed  CAS  Google Scholar 

  • Gronquist M, Bezzerides A, Attygalle A, Meinwald J, Eisner M, Eisner T (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci USA 98:13745–13750

    Article  PubMed  CAS  Google Scholar 

  • Gulz PZ (1993) Epicuticular leaf waxes in the evolution of the plant kingdom. J Plant Physiol 143:453–464

    Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250

    Article  PubMed  CAS  Google Scholar 

  • Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377

    PubMed  CAS  Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70:7119–7125

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer R, Uthoof S, Luftmann H, Steinbüchel A (2003) In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1. Eur J Lipid Sci Technol 105:578–584

    Article  CAS  Google Scholar 

  • Koiwai A, Matsuzaki T (1988) Hydroxy and normal fatty acid distribution on stigmas of Nicotiana and other plants. Phytochemistry 27:2827–2830

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1976) Chemistry and biochemistry of natural waxes. Elsevier, Amsterdam, The Netherlands, p 459

    Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  CAS  PubMed  Google Scholar 

  • Kroumova AB, Wagner GJ (2003) Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various solanaceous plants. Planta 216:1013–1021

    PubMed  CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869

    Article  PubMed  CAS  Google Scholar 

  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol 122:645–655

    Article  PubMed  CAS  Google Scholar 

  • Markstädter C, Federle W, Jetter R, Riederer M, Hölldobler B (2000) Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plants. Chemoecology 10:33–40

    Article  Google Scholar 

  • Matsuzaki T, Koiwai A, Kawashima N (1983) Changes in stigma-specific lipids in tobacco plant during flower development. Plant Cell Physiol 24:207–213

    CAS  Google Scholar 

  • Matsuzaki T, Koiwai A, Kubo S (1986) 1,3-diacylglycerol and 1,2-diacylglycerol types of multiacylglycerol in stigma lipids of tobacco. Agric Biol Chem 50:1581–1587

    CAS  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C (2002) The biopolymers cutin and suberin. In: Somerville CR, Meyerowitz E (eds) The Arabidopsis book. American Society for Plant Biology, Rockville, MD, USA

  • Noiriel A, Benveniste P, Banas A, Stymne S, Bouvier-Nave P (2004) Expression in yeast of a novel phospholipase A1 cDNA from Arabidopsis thaliana. Eur J Biochem 271:3752–3764

    Article  PubMed  CAS  Google Scholar 

  • Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877–8881

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge J, Pollard MR, Stumpf PK (1978) Studies on the biosynthesis of waxes by developing jojoba seed tissues. Lipids 13:203–210

    Article  CAS  Google Scholar 

  • Pagny S, Lerouge P, Faye L, Gomord V (1999) Signals and mechanisms for protein retention in the endoplasmic reticulum. J Exp Bot 50:157–164

    Article  CAS  Google Scholar 

  • Persson B, Argos P (1996) Topology prediction of membrane proteins. Protein Sci 5:363–371

    PubMed  CAS  Google Scholar 

  • Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Bio 47:405–430

    Article  CAS  Google Scholar 

  • Quittnat F, Nishikawa Y, Stedman T, Voelker DR, Choi JY, Zahn MM, Murphy RC, Barkley RM, Pypaert M, Joiner KA, Coppens I (2004) On the biogenesis of lipid bodies in ancient eukaryotes: synthesis of triacylglycerols by a Toxoplasma DGAT1-related enzyme. Mol Biochem Parasitol 138:107–122

    Article  PubMed  CAS  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  PubMed  CAS  Google Scholar 

  • Sandager L, Gustavsson MH, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Jain S, Gupta S, Das T, Tyagi AK (2003) mymA operon of Mycobacterium tuberculosis: its regulation and importance in the cell envelope. FEMS Microbiol Lett 227:53–63

    Article  PubMed  CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  CAS  Google Scholar 

  • Ståhl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banas W, Banas A, Stymne S (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135:1324–1335

    Article  PubMed  Google Scholar 

  • Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Sümmchen P, Markstädter C, Wienhaus O (1995) Esters of Picea abies needle cuticular wax. Phytochemistry 40:599–600

    Article  Google Scholar 

  • Taylor DC, Weber N, Hogge LR, Underhill EW (1990) A simple methods for the preparation of radiolabeled erucoyl-CoA and other long-chain fatty acyl-CoAs and their charaterization by mass spectrometry. Anal Biochem 184:311–316

    Article  PubMed  CAS  Google Scholar 

  • Thomaeus S, Carlsson A, Stymne S (2001) Distribution of fatty acids in polar and neutral lipids during seed development in Arabidopsis thaliana genetically engineered to produce acetylenic, epoxy and hydroxy fatty acids. Plant Sci 161:997–1003

    Article  CAS  Google Scholar 

  • Tonon T, Qing R, Harvery D, Li Y, Larson TR, Graham IA (2005) Identification of a long-chain polyunsaturated fatty acid acyl-coenzyme A synthetase from the diatom Thalassiosira pseudonana. Plant Physiol 138:402–408

    Article  PubMed  CAS  Google Scholar 

  • Underwood BA, Tieman DM, Shibuya K, Dexter RJ, Loucas HM, Simkin AJ, Sims CA, Schmelz EA, Klee HJ (2005) Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol 138:225–266

    Article  CAS  Google Scholar 

  • Uthoff S, Stöveken T, Weber N, Vosmann K, Klein E, Kalscheuer R, Steinbüchel A (2005) Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Appl Environ Microbiol 71:790–796

    Article  PubMed  CAS  Google Scholar 

  • van der Hoeven RS, Steffens JC (2000) Biosynthesis and elongation of short- and medium-chain-length fatty acids. Plant Physiol 122:275–282

    Article  PubMed  Google Scholar 

  • Yahyaoui FEL, Wongs-Aree C, Latché A, Hackett R, Grierson D, Pech J-C (2002) Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening. Eur J Biochem 269:2359–2366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Dow Chemical Company (Midland, MI, USA) and Dow Agrosciences LLC (Indiapolis, IN, USA). J. Hilliard was sponsored by a National Science Foundation summer internship program. The nucleotide sequence corresponding to the PhWS1 cDNA has been deposited in GenBank (DQ093641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew King.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2007_489_MOESM1_ESM.doc

425_2007_489_MOESM2_ESM.doc

425_2007_489_MOESM3_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, A., Nam, JW., Han, J. et al. Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters. Planta 226, 381–394 (2007). https://doi.org/10.1007/s00425-007-0489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0489-z

Keywords

Navigation