Skip to main content
Log in

Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In Arabidopsis the in vitro culture of immature zygotic embryos (IZEs) at a late stage of development, on the solid medium containing synthetic auxin, leads to formation of somatic embryos via direct somatic embryogenesis (DSE). The presented results provide evidence that in IZE cells competent for DSE are located in the protodermis and subprotodermis of the adaxial side of cotyledons and somatic embryos displayed a single- or multicellular origin. Transgenic Arabidopsis lines expressing the GUS reporter gene, driven by the DR5 and LEC2 promoters, were used to analyse the distribution of auxin to mark embryogenic cells in cultured explants and develop somatic embryos. The analysis showed that at the start of the culture auxin was accumulated in all explant tissues, but from the fourth day onwards its location shifted to the protodermis and subprotodermis of the explant cotyledons. In globular somatic embryos auxin was detected in all cells, with a higher concentration in the protodermis, and in the heart stage its activity was mainly displayed in the shoot, root pole and cotyledon primordia. The embryogenic nature of dividing protodermal and subprotodermal cells accumulating auxin was confirmed by high expression of promoter activity of LEC2 in these cells. Analysis of symplasmic tracer (CFDA) distribution indicated symplasmic isolation between tissues engaged in DSE and other parts of an explant. Symplasmic isolation of somatic embryos from the explant was also detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

Abbreviations

CFDA:

5-(and-6) Carboxyfluorescein diacetate

2,4-D:

2,4-Dichlorophenoxyacetic acid

DSE:

Direct somatic embryogenesis

ISE:

Indirect somatic embryogenesis

IZE:

Immature zygotic embryo

SE:

Somatic embryogenesis

References

  • Aloni R, Aloni E, Langhans M, Ulrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  PubMed  CAS  Google Scholar 

  • Atmane N, Blervacq AS, Michaux-Ferriere N, Vasseur J (2000) Histological analysis of indirect somatic embryogenesis in the Marsh clubmos Lycopediella inundata (L.) Holub (Pteridophytes). Plant Sci 156:159–167

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3468–3473

    Article  PubMed  CAS  Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep 17:544–551

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to en embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  CAS  Google Scholar 

  • Fernandez S, Michax-Ferriere N, Coumans M (1999) The embryogenic response of immature embryo cultures of durum wheat (Triticum durum Desf.): histology and improvement by AgNO3. Plant Growth Regul 28:147–155

    Article  CAS  Google Scholar 

  • Fortes AM, Testillano PS, Risueno MC, Pais MS (2002) Studies on callose and cutin during the expression of competence and determination for organogenic nodule formation from internodes of Humulus lupulus var. Nugget Physiol Plant 116:113–120

    Article  PubMed  CAS  Google Scholar 

  • Gaj MD (2001) Direct somatic embryogenesis as a rapid and effiecent system for in vitro regeneration of Arabidopsis thaliana (L.) Heynh. Plant Cell Tissue Organ Cult 64:39–46

    Article  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Harada JJ (1999) Signalling in plant embryogenesis. Curr Opin Plant Biol 2:23–27

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusins: β-glucuronidase as a sensitive and versalite gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Hempel FD, Sha K, Pfluger J, Zambryski PC (2002) Identification of a developmental transition in plasmodesmatal function during embryogenesis in Arabidopsis thaliana. Development 129:1261–1272

    PubMed  CAS  Google Scholar 

  • Lee KS, Zapata-Arias FJ, Brunner H, Afza R (1997) Histology of somatic embryo initiation and organogenesis from rhizome explants of Musa spp. Plant Cell Tissue Organ Cult 51:1–8

    Article  Google Scholar 

  • Mandal AKA, Gupta SD (2003) Somatic embryogenesis of sunflower: influence of auxin and ontogeny of somatic embryos. Plant Cell Tissue Organ Cul 72:27–31

    Article  CAS  Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin level at different stages of carrot somatic embryogenesis. Phytochemistry 31:1097–1103

    Article  CAS  Google Scholar 

  • Mordhorst AP, Voereman KJ, Hartog MV, Meijer EA, van Went J, Koornneef M, de Vries SC (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149:549–563

    PubMed  CAS  Google Scholar 

  • Ni DA, Wang LJ, Ding CH, Xu ZH (2001) Auxin distribution and transport during embryogenesis and seed germination of Arabidopsis. Cell Res 11:273–278

    Article  PubMed  CAS  Google Scholar 

  • Nonohay JS, Mariath JEA, Winge H (1999) Histological analysis of somatic embryogenesis in Brazilian cultivars of barley, Hordeum vulgare L. Poaceae Plant Cell Rep 18:929–934

    Article  CAS  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure. Principles and selected methods. Termarcarphi Pty. Ltd, Melbourne

    Google Scholar 

  • Oparka KJ, Read ND (1994) The use of fluorescent probes for studies on living plant cells. In: Harris N, Oparka KJ (eds) Plant cell biology: a practical approach. Oxford University Press, New York, pp 27–50

    Google Scholar 

  • Quiroz-Figueroa FC, Fuentes-Cerda J, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149

    Article  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asarda H, Van Onckelen HA, Dudits D, Feher A (2002) The role od auxin, pH, and stress in the activation of embryogenic cell divisions in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1817–1819

    Article  CAS  Google Scholar 

  • Pedroso MC, Pais MS (1992) A scanning electron microscopy and X-ray microanalysis study during induction of morphogenesis in Camellia japonica L. Plant Sci 87:99–108

    Article  CAS  Google Scholar 

  • Puigderrajolos P, Mir G, Molinas M (2001) Ultrastructure of early secondary embryogenesis by multicellular and unicellular pathways in cork oak (Quercus suber L.). Ann Bot 87:179–189

    Article  Google Scholar 

  • Raghavan V (2004). Role of 2,4- dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot 91:1743–1756

    CAS  Google Scholar 

  • Rugkhla A, Jones MGK (1998) Somatic embryogenesis and plantlet formation in Santalum album and S. spicatum. J Exp Bot 49:563–571

    Article  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Maufett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  PubMed  CAS  Google Scholar 

  • Santarem ER, Pelissier B, Finer JJ (1997) Effects of explant orientation, pH, solidifying agents and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol Plant 33:13–19

    Article  CAS  Google Scholar 

  • Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryo. Plant Physiol 139:701–712

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Taylor MG, Vasil IK (1996) Quantitative analysis of ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.). Sex Plant Reprod 9:286–298

    Article  Google Scholar 

  • Thomas C, Bronner R, Molinier J, Prinsen E, Van Onckelen H, Hahne G (2002) Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflowers embryos. Planta 215:577–583

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Gulifoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferriere N, Nicole M (2001) Ultrastructural changes in coconut calli associated with tha acquisition of embryogenic competence. Ann Bot 88:9–18

    Article  Google Scholar 

  • Verdus M-C, Dubois T, Dubois J, Vasseur J (1993) Ultrastructural changes in leaves of Cichorium during somatic embryogenesis. Ann Bot 72:375–383

    Article  Google Scholar 

  • Vitha S, Baluska F, Mews M, Volkmann D (1997) Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues. J Histochem Cytochem 45:89–96

    PubMed  CAS  Google Scholar 

  • Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem-mobile, symplastic tracer: An evaluation using confocal laser scanning microscopy. J Exp Bot 47:439–445

    Article  CAS  Google Scholar 

  • Wu Y, Haberland G, Zhou C, Koop H.-U (1992) Somatic embryogenesis, formation of morphogenetic callus and normal development in zygotic embryos of Arabidopsis thaliana in vitro. Protoplasma 169:89–96

    Article  Google Scholar 

  • Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y (2005) Formation of embryogenetic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    Article  PubMed  CAS  Google Scholar 

  • Zambryski PC (2004) Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. J Cell Biol 164:165–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jane Murfett (Division of Biological Sciences, University of Missouri, Columbia) for providing the Col-0 transgenic line carrying DR5::GUS construct and F. Parcy (Institut des Sciences du Vegetal, Gif-sur-Yvette, France) for providing the LEC2::GUS transgenic line. This work was supported part by grants: N303 092 32/3176 and N301 079 31/2544 from the Ministry of Science and Higher Education of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa U. Kurczyńska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurczyńska, E.U., Gaj, M.D., Ujczak, A. et al. Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226, 619–628 (2007). https://doi.org/10.1007/s00425-007-0510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0510-6

Keywords

Navigation